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ABSTRACT 

 
A new method is proposed for activation detection in event-related functional magnetic resonance 

imaging (fMRI). The method is based on nonparametric analysis of selected resolution levels (a subspace) in 
translation invariant wavelet transform (TIWT) domain. Using a priori knowledge about the activation signal 
and trends, we analyze their power in different resolution levels in TIWT domain and select an optimal set of 
resolution levels. A nonparametric randomization method is then applied in the wavelet domain for activation 
detection. This approach suppresses the effects of trends and enhances the detection sensitivity. In addition, since 
TIWT is insensitive to signal translations, the power analysis is robust with respect to signal shifts. 
Nonparametric randomization alleviates the need for assumptions about fMRI noise. The method has been 
applied to simulated and experimental fMRI datasets. Comparisons have been made between the results of the 
proposed method, a similar method in the time domain, and the cross-correlation method. The proposed method 
has shown superior sensitivity compared to the other methods. 
 
Keywords: medical imaging; image processing; wavelet transform; functional magnetic resonance imaging 
(fMRI); activation detection; randomization. 
 

1. INTRODUCTION 
 

Functional magnetic resonance imaging (fMRI) is a non-invasive technique for investigating the functional 
anatomy of the human brain using fast MRI data acquisition methods. It relies on the sensitivity of the transverse 
magnetization decay rate to the variation of certain physiological parameters such as cerebral blood flow (CBF) 
and blood oxygenation level. Neural activity is generally accompanied by an increase in the local CBF in the 
activated brain areas. This causes an increase in the  T2

* decay rate and, therefore, a corresponding increase in 
the intensity of T2

*-weighted MRI. By rapidly acquiring a series of MR images with pulse sequences that are 
sensitive to T2

*, variations of the blood oxygenation level can be measured.1 The fMRI measurements are 
physiologically filtered versions of the actual neural activity, disturbed by electronic noise and other physical 
and physiological artifacts.  

Although blood oxygenation level dependent (BOLD) fMRI has considerable advantages over other 
functional imaging modalities such as EEG, MEG, and PET, its signal is limited. On a 1.5T scanner, the BOLD 
signal change due the experimental stimulation of the brain is approximately 1-1.5%. In addition, various 
sources of noise and artifacts such as subject motion, scanner calibration drifts, physiological processes such as 
vascular flow, heart rate, vessel motion, learning and fatigue significantly confound the fMRI signal. Therefore, 
the analysis method should be insensitive to these interfering signals so that activations can be accurately 
detected. 

A variety of analysis methods have been developed for detecting brain activations in fMRI. Principal 
component analysis (PCA),2 independent component analysis (ICA),3 and fuzzy C-Means clustering,4 are 
examples of model-free and nonparametric data driven methods for analyzing the fMRI data. They do not need 
any prior knowledge about the experiment or the hemodynamic behavior. Based on these methods, the data are 
classified into different groups. Usually, the contents of one class are interpreted as activation, but how the 
activation signal is divided between classes or eigen components is difficult to ascertain. Some of the classes 
separated by these methods have physiological interpretation5-6 but most of them do not. In contrast with PCA, 
ICA, or clustering, model-based fMRI signal analysis methods (e.g., the general linear model7 or the method 
introduced by Bullmore et al.8) assume a specific model for the fMRI signal with a specified noise structure. 
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However, the structure of noise in fMRI is not well understood and remains a contentious subject.9 The validity 
of the statistical models depends on the extent to which the data satisfies the underlying assumptions.  

We have developed a new method for fMRI analysis using translation invariant wavelet transform (TIWT) 
in order to define a feature space for representing the fMRI time-series. Using prior knowledge of the activation 
signal and trends and by a power analysis in the TIWT domain, an optimal subspace is selected in this feature 
space. Then, nonparametric randomization based statistical analysis methods are applied in the selected subspace 
in order to identify the brain areas with significant activations. This method makes no assumptions about the 
noise structure or distribution.  

Wavelet transforms have been previously used in fMRI signal analysis10-11 and also in the analysis of PET 
images.12 Ruttimann, et al.10 applied two-dimensional (2D) wavelet transform on a difference image formed by 
subtracting the average “off” images from the average “on” images. Their method does not require image 
smoothing, takes advantage of efficient thresholding in the wavelet domain rather than the spatial domain, and 
decreases the number of statistical tests needed. The major limitation of their method is that much of the 
temporal information is lost as a result of averaging. Although there is some spatial correlation in fMRI datasets, 
the temporal information is more important than the spatial information. The assumption of i.i.d. noise structure 
is another limitation of this method. Laconte et al.11 applied Wiener filtering in the wavelet domain for fMRI 
noise suppression. Others, e.g., references13-15 also used wavelet transform for suppressing fMRI noise and 
improving detection sensitivity.  

In contrast with the previous works, we use the wavelet domain coefficients directly in order to detect 
activation, i.e., the features extracted by wavelet transform are used directly for activation detection. A power 
analysis is applied in the wavelet domain in order to separate the nuisance components and to select the proper 
subspace. It should be noted that the idea of searching for activation in a subspace has been previously applied to 
fMRI data analysis by other groups. For example, in references8,16 a subspace in the time domain was used for 
activation detection. Randomization analysis has also been employed in previous works for obtaining empirical 
distributions of fMRI statistics.8,17 The novelty of our approach to randomization analysis is its conformity with 
the data exchangeability concept, which should be considered carefully in randomization studies.  
 
 

2. PROPOSED ANALYSIS METHOD 
 

Existence of significant noise and artifacts in the fMRI signal complicates the problem of activation 
detection in the time domain. We propose a multi-resolution decomposition of the signal to find a subspace that 
contains the activation components. Although random noise spreads in all sections of the wavelet transform 
domain almost equally, low frequency and smooth trends concentrate in the lower resolution levels. In the 
proposed approach, the resolution levels in which the relative power of the reference signal is greater than that of 
the trends are selected for analysis. Then, a nonparametric randomization based statistical analysis method is 
used for activation detection in the selected levels. The proposed method includes the following steps. 
Step 1: Select an optimal subspace in the TIWT domain18-20 for maximum separation between the activation and 

the trend components. 
Step 2: Transform the fMRI data into the wavelet domain by applying TIWT on the time-series of each voxel. 
Step 3: Generate a statistical parameter map by using the selected levels of resolution and compute the empirical 

distribution of the statistical parameter under the null hypothesis using the randomization approach. 
Step 4: Using the empirical distribution obtained in Step 3, test the brain voxels for presence of activation. 

The above steps are described in detail in the following sections. 
 
2.1 Selecting wavelet basis functions and subspace 

In this step, a priori knowledge about the trends in the fMRI signal and the neural activity are used to 
select the most appropriate wavelet basis and the most appropriate resolution levels (subspace) in the TIWT 
domain. In the selected resolution levels, the relative power of the reference signal should be greater than the 
relative power of trends. This ensures that any component of neural activity in the time-series will remain in 
these resolution levels. Unselected channels mainly contain noise and other nuisance components.  

The reference signal is the expected neural system response. The most common approach for modeling the 
hemodynamic system is by using a linear time-invariant system,16,21 although nonlinearity of the hemodynamic 



 

 

 
 
 
 

 
 
 

system has also been reported.22 Without loss of generality, we can assume that the system is linear and time-
invariant. A nonlinear model can alternatively generate the reference signal if such a model is assumed. For the 
linear system, we assumed a gamma function23 for the impulse response. The gamma function has two 
parameters and models the delay and the shape of the hemodynamic response closely. We use this function, 
given in (1), as the impulse response of the hemodynamic system.  
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Using the above model, the reference signal is found by convolving the stimulation pattern (input) with the 
impulse response. The samples of the reference function are placed in a vector R of length N, where N is the 
number of time points in the fMRI experiment: 

R=[R(0) R(1), …, R(N-1)]T                                                         (2) 
A group of nuisance components in fMRI time-series includes low frequency and smoothly varying 

signals, which can be called trends. The trends are usually modeled by low degree polynomials24-25 or low 
frequency sine or cosine waves.24 We choose L predefined signals as trends, each of them represented by an N×1 
vector Tl.  TIWT with J levels of resolution ( NLogJ 2= ) is then applied to the reference signal and the trends. 
Let the j-th level wavelet coefficients of the reference and trend signals be represented by vectors Rj and 
(j=1,2,…J), respectively. 
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According to a Lemma (not given here due to page limitation), we have: 
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We next define the indices qj and pj to represent the relative power content at resolution level j for the 
reference vector and the trends, respectively. They may be written as: 
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Note that the use of TIWT ensures that these indices are insensitive to signal translations. Signal translation in 
time results in a similar translation of the coefficients in each resolution level, but the total power of each level 
remains the same. Since the trends are smoother than the reference signal, we expect that pj’s are greater in the 
lower levels of resolution (higher j’s), whereas, qj’s have greater values in the higher levels of resolution (smaller 
j’s). Our objective is to select an optimal resolution level j0 and perform the subsequent statistical analyses on the 
subspace defined by the set of resolution levels j=1,2,…, j0. For this purpose, we define j0 to be the resolution 
level, which minimizes the following error function:  
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This is similar to minimizing the total classification error in pattern classification applications. 
The same strategy may be used to find the optimal wavelet basis. Since E(j0) shows the ability of a wavelet 

basis in separating the trends from the reference signal, the optimal basis should have the minimum E(j0). Thus, 
different bases may be compared by their E(j0). This method was used for selecting the TIWT basis functions. 
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After finding j0, we remove the means of Rj’s and normalize them, in order to generate a unit reference 
vector, jR′ , at each level of resolution.  
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The qj’s as also normalized as follows: 
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2.2 Statistical parameters 
Let iX  represent the vector of time-series measurements of a voxel i (i=1,2,…V), where V  is the number 

of intra-cerebral voxels being analyzed. We first remove the mean of the time-series, i.e., 
)( iii XMeanXY −= .                                                        (12) 

Then, we calculate the TIWT of the vector Yi up to resolution level j0 using the algorithm of Section 2 and put 
the coefficients of each level in a vector, remove their mean, and denote them by i

jD , where:   
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Next, for each level we compute the following parameter: 
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We have defined the vector of TIWT coefficients of the reference signal at the resolution level j by Rj and 
the corresponding coefficients of vector Xi at this level by i

jD . Since jR′  is a unit vector, (14) measures the 

cotangent of the angles between jR′  and i
jD  which is proportional to the t-test statistics. 

By computing i
js  for the j0 levels, we have j0 indices of similarity for different levels of resolution between 

the reference vector and the signal at voxel i. If voxel i has significant activation, then vectors jR′  and i
jD  are 

similar and the angle between them is small and therefore the i
js ’s are large. Therefore, i

js ’s can be used to 

decide on the activation state of the voxel. Each statistic, i
js , can be used alone to identify an activation map for 

its corresponding resolution level. These maps must be combined into a single map showing the activated brain 
regions. One possibility is combining them using decision fusion operators, e.g., logical AND and OR, to get the 
final activation map. Another approach is to use data fusion in order to combine all j0 statistics i

js  into a 

summary parameter ti. A reasonable combination method is to define ti to be the weighted average of i
js  with 

weights proportional the relative reference signal power at level j, that is, jq′ . Thus, we have: 
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In the following section, we present a nonparametric approach for detecting the activated voxels using this 
parameter. 
  
2.3 Randomization analysis 

In order to test the statistical significance of the statistic ti at a given voxel i, we need its probability 
distribution under the null hypothesis, H0, that the voxel is not activated. A common approach for getting the 
distribution is to develop an analytical expression for it. For this purpose, one needs to make certain assumptions 
about the noise structure and distribution. Therefore, validity of the results depends on the validity of these 
assumptions. Another approach is the randomization method in which there is no need to make any assumptions 
about noise structure and distribution. The empirical distribution of the parameter under study is estimated from 



 

 

 
 
 
 

 
 
 

the data. The basic assumption of the randomization is that, under null hypothesis, the order of data can be 
changed. In this method, the data is scrambled and the generated realizations of the parameter of interest are used 
for estimating the empirical histogram of the desired parameter. The main issue in randomization is data 
exchangeability under null hypothesis.26 A set of random variables is exchangeable if (and only if) the joint 
distribution of these variables is invariant with respect to the positions (order of placing) of them.26 However, in 
the fMRI time-series there is an obvious temporal autocorrelation whose level depends on TR of the fMRI 
experiment. Although there are reports on using image order scrambling17, temporal autocorrelation suggests that 
the fMRI data is not exchangeable especially when TR is short. 

In addition to its compatibility with the data exchangeability, the proposed randomization method 
preserves the MRI temporal autocorrelation. It relies on the idea that, under the null hypothesis condition, the 
time position of the target events in the fMRI experiment is not important. Therefore, the position of the target 
events in the stimulus pattern can be permutated. The outcome of each permutation of the target events is a 
random stimulus pattern, which produces a random reference vector. Analyzing the dataset using this random 
reference vector generates a random t map. By repeating the permutation Nperm times, Nperm random t maps are 
generated. Let us denote the ith random t map by Ti and the t map generated by using the actual (experimental) 
sequence of events by T. Thus, the t values of a voxel n in these maps are denoted by Ti(n) and T(n), 
respectively. These maps are used for activation detection.  

 
2.4 Activation detection 

The first step in detection is doing an omnibus test for examining the existence of any activation in the 
whole data set.27 This kind of test has a strong control on the overall type I error.27 If the data passes this test 
successfully, we are confident that the activations detected in the next step have not been obtained entirely by 
chance. The second step localizes the activations within the brain. 

The omnibus null hypothesis Ω
0H , which states that there is no activation in the data, is tested using the 

method proposed in reference.27 The maximum value of each parameter map is computed. 
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Using the empirical histogram generated from the set of max
lt ’s an omnibus p value can be computed as follows: 
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where “Card” denotes the cardinality of the set. A small value of pomnibus indicates the presence of activation 
somewhere in the brain. 

In the second step, we use the empirical histogram generated from the random t maps (M = Nperm*V 
realizations of t under null hypothesis) to compute the p values for the voxels. The p value of voxel i is computed 
as: 
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For a false alarm rate of α, we reject the null hypothesis for pixels with p values smaller than α and mark 
the corresponding voxels as active.  

 
 

3. SIMULATION AND EXPERIMENTAL METHODS AND RESULTS 
 
The proposed method for activation detection has been applied to simulated and experimental fMRI 

datasets and its performance has been compared to those of a similar time domain method and the conventional 
cross-correlation method. Image acquisition and processing details are described in the following sections. 

 



 

 

 
 
 
 

 
 
 

3.1 Simulated dataset 
For simulating an fMRI dataset, we added activations, trends, and noise to a base image. The base image 

was obtained by averaging 256 images of size 64 × 64, collected by a T2
*-weighted gradient echo single-shot 

echo-planar (EPI) sequence using a 1.5 T Siemens Vision MRI scanner (Siemens AG, Erlangen, Germany). The 
imaging parameters were TR=1648 ms, TE=45 ms, Flip Angle=90º. The pixel size was approximately 3.91 × 
3.91 mm2 and slice thickness was 6 mm with no gaps. During data collection, the subject was at rest. The base 
image is shown in Fig. 1.a.  

Each simulated time-series contained 256 time points. Gaussian noise with zero mean and standard 
deviation 10 was added to each time-series. Trends were simulated using first and second degree polynomials ( 
f(t) = t and f(t) = t2 ). The amplitude of trends were different for different pixels and had a normal distribution 
with zero mean and standard deviation 0.01 and 0.0008 for the first and second degree polynomials, respectively. 

The spatial pattern of activity is shown in Fig. 1.b. As in reference28 different contrast levels (1%, 2%, 3%, 
and 4%) in different sizes of clusters (3, 6, 8, and 12 pixels) were added to the dataset. The hemodynamic 
response function parameters were τ = 4.73, σ = 0.063923 and the reference signal was computed. The input of 
the block diagram was a series of 17 randomly positioned impulses corresponding to our experimental fMRI data 
acquisition described in Section 3.4. The reference signal was the same for both simulated and experimental 
fMRI data. 

 
3.2 Comparison studies 

The proposed method has been compared with two other methods. The first method is similar to the current 
method without the application of TIWT, i.e., the analysis is done in the time domain by the same statistical 
procedure. This allows evaluating the effect of TIWT on detection sensitivity. The time domain method uses a 
similar statistical parameter given by: 
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where, Re is a unit reference vector produced by removing the mean and normalizing the vector R in (2), and Yi is 
the time-series of pixel i after its mean is removed as defined in (12). The same randomization analysis explained 
in Section 2.3 was used to estimate the distribution of e under the null hypothesis. 

The second method used for comparison is the conventional cross-correlation method.29 The statistic for 
this method is computed by: 
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To test the significance of ci, the correlation coefficients are usually transformed using Fisher’s Z transform: 
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to generate an approximately normally distributed parameter iz  (under the null hypothesis) with mean of zero 
and variance of 1/(N-3).30 
 
3.3 Simulation results 

To select the optimal basis for the TIWT, we examined the following bases: Haar wavelet with 2 
coefficents; Daubechies wavelets with 4 and 6 coefficients (which have 2 and 3 vanishing moments);31 Battle-
Lemari spline wavelets with 8 and 16 coefficients (which produce an orthonormal wavelet basis); Coiflet 
wavelet of degree 2 (two vanishing moments in both wavelet and scaling functions) with 6 coefficients; and 
Coiflet wavelet of degree 3 (three vanishing moments) with 8 coefficients.31   

 



 

 

 
 
 
 

 
 
 

   
              a                               b 
 
Fig. 1. a) The base image used for simulation. b) Spatial pattern of activity. Activations were added to the dataset in the 
regions shown in this figure. The activation contrasts for the columns (from left to right) are 1%, 2%, 3%, and 4%, 
respectively. 

 

    
a                                         b                                         c                                          d 
 
Fig. 2. a) Actual spatial pattern of activation in simulation. b,c,d) Activation maps resulted form three different methods for 
false alarm rate of α=0.005. b) Proposed TIWT based method. c) Similar method in the time domain. d) Cross-correlation 
method. 
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Fig. 3. Comparison of the number of correctly detected active voxels (true positives) for three different methods at different 
false alarm rates. 



 

 

 
 
 
 

 
 
 

The reference signal was decomposed into J=8 levels of resolution. The values of the normalized power of 
the reference signal in each level of resolution (qj) show that the power is mainly concentrated at higher 
resolution levels (lower j’s). The number of trends was chosen to be L=2 corresponding to polynomials of 
degrees one and two.  

After computing the pj and qj for different wavelet bases, the error was estimated. We found that the Battle-
Lemari spline wavelet with 16 coefficients has the minimum error among all of the bases studied. Based on these 
results, the higher resolution levels at j=1,2,3,4,5, and the Battle-Lemari spline wavelet were selected as the 
subspace for the analysis and the basis for the TIWT, respectively. 

After selecting the optimal subspace and wavelet basis, the TIWT was applied to the time-series of all 
voxels. The parameters is1 , is2

, is3
, is4

, is5 , and the final statistical parameter of the method ti were computed for 
each voxel i. Randomization was performed Nperm=1000 times and random maps were generated for each of the 
selected levels of resolution and for the parameter t.  

In the first step of detection, the omnibus test was performed for the dataset. The omnibus p value of the 
data set, defined by (18), was 0.001 suggesting that the dataset contains activation. In the second step, the 
random t maps were used for computing the empirical histogram of t under the null hypothesis.  

For comparison, the randomization method was applied to the time domain method. The random maps of 
parameter e were computed and the omnibus test was applied, resulting in a p value of 0.001. The cross-
correlation method was also applied to the simulated dataset. Fig. 2 shows the actual activation pattern along 
with the detected activation regions using the proposed method, the time domain approach, and the cross-
correlation method for false alarm rate of α=0.005. Note that the multi-resolution wavelet based method has 
detected more active pixels than the other two methods. 

For comparison between sensitivities of the methods, the detection procedure was performed at different 
false alarm rates. Fig. 3 compares the number of correctly detected active voxels at different false alarm rates for 
the three methods.  

 
3.4 fMRI experiment 

The fMRI experiment was conducted using a 1.5 Tesla Siemens Vision MRI scanner (Siemens AG, 
Erlangen, Germany) located at the Center for Advanced Brain Imaging of the Nathan Kline Institute. Four 
healthy subjects were scanned. The task given to the subjects in this experiment is known as the “classic visual 
oddball paradigm.”  In this task, a train of equally spaced visual stimuli was presented to the subjects. There 
were two types of stimuli: the standard stimuli; and the target stimuli. The standard events occurred more 
frequently than the target events. The subjects were instructed to count the target stimuli silently and report the 
total number at the end of the experiment. The standard (frequent) visual stimulus was an image consisting of the 
string of white characters “OOOOO” on a dark background and occurred 93.36% of the times; the rare (target) 
image was the string of characters “XXXXX” and occurred 6.64% of the times. Visual stimuli were delivered to 
the subject via a liquid crystal display (LCD) mounted on the MRI scanner’s radio frequency (RF) head coil. The 
LCD display was connected to the video graphics array (VGA) output of a personal computer (PC) outside the 
scanner room. A total of 256 images were shown to the subjects (17 targets and 239 standards) in one 
experimental. The inter-stimulus interval (ISI) was 1648 ms and the stimulus duration was approximately 
500 ms. For the remaining time (~1148 ms) the screen was dark. The target events were distributed randomly 
amongst 256 trials. The subjects were given earplugs and were positioned supine and comfortably in the magnet. 
Cushions were placed around the subject’s head in order to reduce the head motion.  

Using a T2
*-weighted gradient echo single-shot echo-planar (EPI) sequence with TR = 1648 ms, TE = 

45 ms, Flip Angle = 90º, and FOV = 250×250 mm2, a total of 256 EPI volumes were scanned from each subject. 
Each volume covered the entire cerebrum and the superior aspect of the cerebellum, consisting of 15 transverse 
slices of size 64×64 with a pixel size of approximately 3.91×3.91 mm2 and a slice thickness of 6 mm with no 
gaps. The acquisition of each EPI volume was synchronized with the onset of a visual stimulus. The 
synchronization was achieved by triggering the MRI scanner using an external TTL pulse generated by the 
stimulus presentation PC. In addition to the EPI data, a high-resolution anatomical 3D T1-weighted image 
volume was scanned from each subject using a magnetization-prepared rapid acquisition gradient echo (MP-
RAGE) sequence. The scan parameters for this sequence were TR = 11.6 ms, TE = 4.9 ms, Flip Angle = 8º, FOV 
= 256×256×190 mm3, with a matrix size of 256×256×190 voxels, yielding a 1 mm3 isotropic voxel size.  



 

 

 
 
 
 

 
 
 

The first four scans of functional dataset were omitted and the rest of images were registered for motion 
artifacts using the AFNI software package (Medical College of Wisconsin, Milwaukee, WI).32 For separating the 
intra-cerebral voxels, a brain mask was generated. This mask was generated by thresholding an average image of 
all 252 volumes of data. Limiting the processing only to the intra-cerebral voxels resulted in a significant saving 
in memory and disk space. The axial MP-RAGE images were transformed into the Talairach-Tourneaux 
stereotactic atlas using the AFNI software package. 

Since the reference signal, the homodynamic response function parameters, the trends, and the number of 
time points in the simulation study were chosen to be the same as this experimental dataset, the results presented 
in the previous section, on wavelet basis and subspace selection, were used here. In the analysis of this dataset, 
we also compared the proposed approach with the similar approach in time domain and the cross-correlation 
method. The randomization procedure was done for Nperm = 500. All subjects passed the omnibus test.  

The detected activation image for each subject was resliced to 256×256×190 to match to the anatomical 
images. Three orthogonal slices of the results for the first subject is shown in Talairach space in Fig. 4. The 
bilateral activation of the supramarginal gyrus in the inferior parietal lobule (Brodmann Area 40) and the 
activation of the anterior cingulate are noteworthy. Both of these regions have been found activated in previous 
fMRI studies of the oddball task.33-35 Fig. 5 shows the number of voxels detected by the proposed method, the 
time domain method, and the conventional cross-correlation method in each subject for α=0.001. Note that in all 
cases the proposed TIWT method outperformed the other methods. 

 
 

 
 
Fig. 4. Three orthogonal views of detected activation regions superimposed on the anatomical images in Talairach space for 
the first subject. 
 

Number of detected voxels

0
100
200
300
400
500
600
700

1 2 3 4

Subject number

TIWT based method

Correlation method

Similar time-domain
method

 
 
Fig. 5. Number of detected voxels in four experimental datasets using TIWT, correlation, and similar time domain methods. 



 

 

 
 
 
 

 
 
 

4. CONCLUSION 
 

The purpose of this paper was to present a new analysis method for fMRI with improved activation 
detection sensitivity. Using a simulation study, we showed that the true positive detection rate (number of 
correctly detected active voxels) of the proposed method is higher than those of the other two methods 
compared, at the same false alarm rates. The superiority of the proposed method stems from the multi-resolution 
decomposition of the wavelet transforms to separate the nuisance components form the fMRI signal and using 
proper levels of resolution. Although it is possible to have multiple detections in j0 resolution levels, this 
approach not only increases the total false positives and computation, but also results in a smaller number of 
activations.  

For the sake of completeness, we compared the proposed method to the conventional cross-correlation 
method as well as a similar time domain method. However, it should be noted that the comparison studies 
between the proposed method and the similar time domain method are most meaningful because of the 
algorithmic similarities and use of similar randomization analysis in these two methods. Using the randomization 
analysis for activation detection allows the false alarm rates of the methods to be exactly at the selected rates. 
Detecting more activated voxels at the same false alarm rate means superior sensitivity. In addition, these 
comparison studies illustrate the benefit of TIWT and conducting the detection task in the selected resolution 
levels of the TIWT domain. 
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