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ABSTRACT 
This paper presents an information fusion approach for automatic detection of mid-brain nuclei (caudate, 
putamen, globus pallidus, and thalamus) from MRI. The method is based on fusion of anatomical 
information, obtained from brain atlases and expert physicians, into MRI numerical information within a 
fuzzy framework, employed to model intrinsic uncertainty of problem. First step of this method is 
segmentation of brain tissues (gray matter, white matter, and cerebrospinal fluid). Physical landmarks such 
as inter-hemispheric plane alongside numerical information from segmentation step are then used to 
describe the nuclei. Each nucleus is defined according to a unique description according to physical 
landmarks and anatomical landmarks, most of which are the previously detected nuclei. Also, a detected 
nucleus in slice n serves as key landmark to detect same nucleus in slice n+1. These steps construct fuzzy 
decision maps.  Overall decision is made after fusing all of decisions according to a fusion operator. This  
approach has been implemented to detect caudate, putamen, and thalamus from a sequence of axial T1-
weighted brain MRI�s.  Our experience shows that final nuclei detection results are highly dependent upon 
primary tissue segmentation. The method is validated by comparing resultant nuclei volumes with those 
obtained using manual segmentation performed by expert physicians. 
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1. INTRODUCTION 
Magnetic Resonance images (MRI) provide detailed anatomical information about the internal structures 
and substructures of the human body.  Detection of internal structures in brain MRI is widely used to 
diagnose several brain diseases such as epilepsy, multiple sclerosis lesions, schizophrenia, and alcoholism. 
Moreover, accurate segmentation of brain structures is a fundamental issue in navigated brain surgery. 
Considering the fact that manual detection of brain structures is a very time-consuming task while subject 
to operator mistakes, the need to develop a reliable and accurate automatic technique has been emerged. A 
great deal of research activities is being carried out throughout the world to provide an environment in 
which physicians can rely on the computerized detection of brain structures. 
 
Many of these automatic methods are based on image registration in which a digital brain atlas (source) is 
mapped onto the MRI (target) according to an appropriate transformation.1, 2  To find a specific structure in 
the MRI, the corresponding labeled structure in the template atlas is mapped to the target image. This 
matching process can be based on physical point matching (landmark-based registration),3 free form 
transformation,4 geometric feature matching, or anatomical matching.  In addition to image registration 
techniques, the segmentation process can be performed using dynamic contours and active shape models.5  
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Recently, Barra and Boire6 introduced a new approach to the detection of brain substructures using 
information fusion. Their method is based upon the theory of data fusion in image processing.7  In this 
approach, the desired structures are described by means of symbolic information. The symbolic information 
consists of expert physicians� description of the structure. The uncertainty inherent in linguistic description 
is modeled by means of fuzzy theory. On the other hand, numerical information such as image statistical 
data, morphology, segmentation, and filtering are provided with image processing techniques. These two 
kinds of information are then fused according to an appropriate fusion operator, which provides the 
detection of the desired structure. 
 
In this paper, some mid-brain substructures such as caudate, putamen, and thalamus nuclei are detected in a 
sequence of axial MRIs.  The necessary anatomical information, obtained from both brain atlases and 
expert physicians, are fused into the image numerical information. We have used both anatomical and 
structural landmarks to detect the desired structures. Once a structure is detected, we have used it as a 
landmark to find other structures and/or the same structure in the preceding slice. The advantage of this 
method is that it is applicable to detect any uniquely describable structure.  
 
In Section 2, we present the method formulation.  In Section 3, we show experimental results for the 
detection of caudate, putamen, and thalamus in a sequence of axial MRI data.  In Section 4, we discuss the 
validation results and present concluding remarks.  
 

2. PROPOPSED METHOD 
In this section, we first review the theory of information fusion in image processing briefly. Then we 
introduce the nuclei description. In Subsection 2.3, we reveal what mathematical fusion framework best fits 
our application.  Finally, the system block diagram is shown and its blocks are discussed in detail. 
 
2.1  Data fusion in image processing 
A comprehensive review of the theory of information fusion in image processing has been presented by I. 
Bloch and H. Maître.7  In their paper, image fusion is defined as the process that combines information 
obtained from different sources in order to make a decision. Generally speaking, all of the data that we are 
dealing with can be categorized either as symbolic or numerical. While numerical information is easy to 
understand, symbolic information requires more attention. Within an appropriate mathematical framework, 
the symbolic information would be quantifiable. For example, if the symbolic information is a general rule 
consisting of imprecision, a mathematical framework that models imprecision such as fuzzy theory is 
appropriate. A general image fusion problem statement can be as follows: Given L general heterogeneous 
sources of information, Sj (0≤j≤L), a decision Di

j (0≤i≤n) is taken on element p according to source Sj. For 
each I, Di is estimated after fusing the Di

js according to a fusion operator F: Di=F (Di
1, Di

2, �, Di
L). A final 

decision is made on the resultant Di. These steps can be summarized as follows: 
 

a. Information modeling in a mathematical framework; 
b. Estimation of the Di

js; 
c. Choosing an appropriate fusion operator; 
d. Making the decision. 

 
In our application, the heterogeneous sources of information (Sj) are the gray-level matrix of MRI, the 
result of the tissue segmentation, and the nuclei descriptions. Depending on the desired nucleus description, 
an associated set of decision maps (Di

j) is acquired. We have then fused these decision maps by means of a 
fusion operator and have taken the decision based on the resultant Di. 
 
2.2 Nuclei description 
Accurate detection of brain internal structures is still an open problem. The complexity arises from the 
inherent complexity of the brain. The advantage of using an information fusion approach is that once a 
structure is uniquely describable, it can be detected. We have used this approach to detect caudate, 
putamen, and thalamus nuclei. These structures are defined as follows:8 
 
 
 



2.2.1 Topographical anatomy of caudate nucleus8, 9 
Caudate nucleus is an elongated arcuate mass of gray matter related throughout its extent to the lateral 
ventricle, occupying the floor of the anterior or frontal horn and the roof of the temporal horn. Its anteriorly 
enlarged portion is termed the head and protrudes into the frontal horn of the lateral ventricle. At the 
interventricular foramen, the nucleus narrows to constitute the body of the nucleus, which lies dorsolateral 
to the thalamus and contiguous to the lateral wall of the lateral ventricle (Fig. 1a).8  The anatomy of caudate 
nucleus reveals that it is a gray matter that is adjacent to frontal lobes of the lateral ventricle from one side 
and surrounded by white matter from the other side.9 
 
2.2.2 Putamen9 
The putamen is a gray matter structure fully surrounded by white matter (internal and external capsules). It 
is the nearest mass of gray matter to the head of caudate nucleus and adjacent to globus pallidus. If the MR 
imaging resolution is not high enough, the globus pallidus is not observable. Moreover, the putamen is 
located almost at 1-1.5 cm of the caudate nucleus. 
 
2.2.3 Anatomy of internal capsule8 
The cerebral cortex is connected with the thalamus, the brainstem and the spinal cord by an extensive 
projection fiber system, which penetrates the white matter of Centrum semiovale of Vieussens and 
converges as the corona radiata toward the thalamus. At this level, these radiating fibers constitute a 
compact band interposed between the thalamus and the caudate on the medial side, and the lentiform 
nucleus on the lateral aspect. This mass of fibers is designated as the internal capsule.8  We have used the 
internal capsule to locate the thalamus. 
 
2.2.4 Thalamus8, 9 
The thalami are the largest, most internal structures of the diencephalons, consisting of two oblique ovoid 
nuclear masses of gray matter situated at the rostral end of the midbrain on each side of the third ventricle. 
Each thalamus is about 3-4 cm long.8  The lateral wall of the thalamus borders upon the internal capsule9 

(Fig. 1c). The thalamus is intrinsically more difficult to detect, since it is a relay station for the afferent 
tracts. This leads to a great amount of ambiguity at the edges of the detected nuclei. The higher the 
resolution (the shorter the thickness of an MRI), the better is the final detection of the thalamus from MRI. 

                      (a)                                                         (b)                                                         (c) 
Figure 1: Localization of some brain nuclei. (a) Caudate. (b) Putamen. (c) Thalamus. 

 
2.3 Mathematical fusion framework 
From the nuclei descriptions, which constitute important information, it can be seen that we need a 
mathematical framework to model uncertainty and imprecision. Fuzzy theory satisfies all the desired 
specifications in this regard.  
 
2.3.1 Numerical information 
The numerical information consists of the segmentation of the image according to a fuzzy classification 
algorithm. The classification algorithm is a revised version of fuzzy c-means (FCM) and is adapted to the 
MRI segmentation into 4 classes: Background, cerebrospinal fluid (CSF), gray matter, and white matter. In 
the standard version, the FCM iteratively minimizes the following cost function J: 



��
= =

=
C

i

N

j
ij

m
ij cxduJ

1 1
),( , 

where iju  is the class membership function, and ),( ij cxd provides the Euclidean distance between each 

data jx and each class center ic .  The fuzzification degree is m , and can take any number in the range of 
[2, 3] without significant difference in the results. 
 
However, it was seen that FCM presents poor results for the accurate edge detection in the fuzzy 
neighborhoods where the white matter and gray matter meet. This is particularly because of the fact that the 
fibers (white matter) actually penetrate the gray matter structures. The partial volume effect intensifies this 
inappropriate segmentation. To overcome this flaw, once the preliminary segmentation is done, we re-
segmented the combined white matter and gray matter classes. It is seen that, the gray matter itself consists 
of 2 combined classes. The results of the implementation of standard FCM (Fig. 2b) versus our modified 
version (Fig. 2c) are compared in Fig. 2. 
 
 

                   (a)                                                             (b)                                                             (c) 
 

Figure 2: (a) Original T1-weighted MRI. (b) Segmentation results from the standard FCM method.  
(c) Segmentation results from our proposed modified FCM method. 

 
 

2.3.2 Symbolic information 
The nuclei descriptions, presented in Subsection 2.2, deal with uncertain data such as adjacent to, anterior 
to, and almost at d cm of.  Hence, they are most efficiently implemented using fuzzy maps.  The following 
fuzzy membership functions were used to implement such vague information: 

• Adjacent to structure and at direction D (Fig. 3b) 
• At distance d of the structure and at direction D (Fig. 3c) 
• Exterior and adjacent to the structure (Fig. 3d) 

To avoid complexity D is taken as D={right, left, up, down}). The results of the implementation of these 
fuzzy membership functions on a sample structure are shown in Fig. 3. 
 

            (a)                                           (b)                                              (c)                                          (d) 
Figure 3: (a) A given structure S. (b) Adjacent at right. (c) Distance d at right. (d) Exterior and adjacent. 



 
2.4 System block diagram 
The proposed system block diagram is shown in Figure 4. After initial tissue segmentation (Fig. 2b), the 
misclassified areas around the edges where white matter and gray matter meet are refined (Fig. 2c). This 
numerical information is fused into the symbolic information, obtained from expert physicians, according 
to an Information Fusion Operator (IFO) to detect the desired nuclei. Each detected nuclei in slice n is the 
key landmark to detect the same nuclei in slice n+1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The system block diagram. 
 
 

3. EXPERIMENTAL RESULTS 
In this section, we show the results of our algorithm on a sequence of T1-weighted MRI. First, we 
introduce the data to which the algorithm has been applied. Then we present the experimental results for 
the detection of caudate, putamen, and thalamus. At the end of this section, a test is performed to 
quantitatively validate the results.  
 
3.1 Data 
The data has been acquired from BrainWeb: Simulated Normal Brain Database.10, 11  The slice thickness is 
1mm with 3% noise and 20% intensity non-uniformity in the axial plane. A sequence of 6 slices is used in 
which all the desired nuclei are present. Each slice is grabbed 2mm from the preceding slice, covering 
1.2cm of the midbrain. Figure 5 shows the original data. 
 
3.2 Nuclei detection 
According to the nuclei descriptions presented in Section 2.2, right caudate, right putamen, and right 
thalamus are detected successfully from the left side of image. Figure 6 shows the detection of these nuclei 
in the MRI sequence.  
 
3.3 Test of validity 
To test the validity of the results, we asked 2 experts to segment each nucleus manually twice in each slice 
and then combined the results to generate a region for each nucleus.  To this end, the pixels that were 
common in at least 3 segmentations were used in the definition of final regions.  These regions were used 
to evaluate the results of the algorithm according to the following similarity measure: 
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where expI is the binary region mentioned above and lgaI  is the region resulted from the algorithm. Table 
1 shows the quantitative measures of similarity of each nucleus to the expert-detected one. It is seen that the 
algorithm has a good performance for detecting these nuclei. 

 
Figure 5: Original T1-weighted MR images. 

 

 



Figure 6: Detection of caudate, putamen, and thalamus nuclei by the proposed method. 
 
 
 

Table 1: Similarity measure of the detected nuclei to the regions selected by experts. 
 

Slice\Structure 
 

Right Caudate  
(left side of image) 

 
Right Putamen 

(left side of image) 

 
Right Thalamus 

(left side of image) 
Slice 1 92.7% 97.9% 88.0% 
Slice 2 94.2% 98.8% 81.7% 
Slice 3 97.3% 96.3% 89.3% 
Slice 4 90.2% 88.0% 83.7% 
Slice 5 99.5% 84.2% 82.6% 
Slice 6 99.5% 17.0% 88.1% 

 
 

4. CONCLUDING REMARKS 
A method based on information fusion was proposed to detect midbrain structures from MRI automatically. 
Once a structure is uniquely describable, the algorithm finds the associated nucleus. We have implemented 
this approach to detect caudate nucleus, putamen, and thalamus. The test of validity shows that in most of 
the slices in which all three nuclei are present the algorithm is reliable. In the last slice, the putamen is 
almost disappearing and that is why a small similarity measure has been obtained. 
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