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Abstract 

Background: Conventional methods for spike train analysis are based on rate function as a 

source of information while many experiments have shown a temporal coding mechanism too. 

Several techniques have been used for analyzing these two sources of information separately but 

using both sources in a single framework is still a challenging problem. Here, an innovative 

technique is proposed for spike train analysis by considering rate and temporal information. 

Methodology/Principal Findings: Point process modeling approach is used to estimate stimulus 

conditional distribution based on observation of repeated trials. The extended Kalman filter is 

applied for estimation of the parameters in a parametric model. In order to extend this model 

from single neuron to neuronal population, marked point process strategy is used. Each spike 

train is transformed into a binary vector and then projected from the observation space onto the 

likelihood space. This projection generates a newly structured space that integrates temporal and 

rate information and thus improves performance of distribution-based classifiers. The stimulus-

specific information is investigated in this space and used as a distance metric between two 

stimuli. To illustrate advantages of the proposed technique, spiking activity of inferior temporal 

cortex neurons of macaque monkey are analyzed in the observation and likelihood spaces. Based 

on goodness-of-fit, performance of the estimation method is demonstrated and the results are 

compared with the firing rate-based framework. 

Conclusions/Significance: Due to improvement in neural discrimination of stimulus and new 

interpretation of information that can be used as a similarity measure, it is concluded that the 

likelihood space generates a more accurate representation of stimulus space. Finally, the problem 

of neural mechanism of visual object categorization may be addressed in this framework. 
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Introduction 

Establishing quantitative correlation between neuronal spiking activity and external stimulus 

is a challenging task in neuroscience. Neurons generate series of spikes in response to the 

stimulus. A spike train is a stochastic process composed of a sequence of binary events that 

occurs in continuous time [1]. The point process theory is used as a stochastic framework to 

model the non-deterministic properties of the neural spike trains in which its parameters are 

estimated by recording the spike trains of a neuron in repeated trials [2]. The point process 

models can capture most of the nonlinear and stochastic properties of the neurons such as 

dynamic stimulus modulated response [3]. 

Point process framework is commonly used to model neuronal spiking activity [4]. This 

framework allows dynamic modeling, which is an important tool in computational neuroscience 

for studying neural dynamics [5]. Neural receptive field plasticity [6, 7], neural coding analyses 

[8, 9], neural spike train decoding [10, 11], neural prostheses [12, 13], analyses of learning [14, 

15], analysis of neuronal spiking dynamic [16], and control algorithms’ design for brain machine 

interfaces [17, 18], are examples of the neural dynamics. In most of the conventional methods, 

the neuronal firing rates of spiking activity are considered as a source of information and the 

temporal information is not included in the processing algorithms. In the case of temporal 

analysis in encoding the stimulus information, the neuronal rate functions are not considered. 

However, many experiments show different kinds of integration in temporal and rate information 

in encoding the stimulus features [19]. 

In many neuroscience research experiments, the aim of the study is to investigate how 

dynamic properties of neuronal system in the single or population level lead to the functional 

properties of specific brain regions [16]. The dynamic property of neural system, especially in 
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spike train recording, indicates the requirement for dynamic signal processing methods. Despite 

the development of efficient dynamic signal processing algorithms, most current methods for 

neural spike train data processing are static and rate function based rather than dynamic and 

temporal based. For this reason, the enthusiasm for dynamic signal processing methods explicitly 

developed for neural spike train is increasing [20]. 

In this paper, a new feature space is generated by considering spike trains as binary vectors 

and projecting them onto the likelihood space. In this space, we are able to integrate temporal 

and rate information and compensate errors of modeling stimulus distribution in the observation 

space. These may improve performance of distribution-based classifiers by transforming the 

decision region into a contiguous region in the likelihood space. 

Organization of the paper is as follows. First, we review point process modeling of neurons 

in terms of conditional intensity function and introduce the state space point process filtering 

approach by describing its parameter estimation method. Then, we show that the likelihood 

function of a spike train can be estimated based on the proposed model and also the likelihood 

space for each neuron can be generated by projecting its spike train. The marked point process is 

used for extending the model from a single neuron to a population of neurons. Properties of the 

likelihood space for spike trains are investigated. A new interpretation for information content of 

a spike train regarding a specific stimulus is introduced and used as a metric between the clusters 

of points in the projected space which is associated with the presented stimulus. Finally, we 

illustrate the efficiency of the estimation technique based on a goodness-of-fit criterion and 

demonstrate properties of the likelihood space by modeling neuronal spiking activity of the 

inferior temporal cortex of monkey in the single and population levels while performing a 

passive fixation task. 
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Materials and Methods 

Point process modeling of a neuron: A stochastic neural point process can be completely 

characterized by its conditional intensity function which is a strictly positive function that gives a 

history-dependent generalization of the rate function of a Poisson process [21]. We use the 

conditional intensity function to characterize the spike train as a point process. We assume that in 

an interval      , J spikes are fired by a single neuron at times             for        . The 

conditional intensity function is defined as: 

                  
    

 
                            

  
 

 

                                           

where                is a conditional probability,       includes the neuron’s spiking history and 

the trace of spikes occurrences up to time  , and       is a parameter to be estimated. The       

is the number of spikes fired by the neuron in      . Because the conditional intensity function 

completely defines the point process, to model the neural spike train in terms of a point process, 

it suffices to define its conditional intensity function. Parametric models may be used to express 

the conditional intensity as a function of covariates of interest [22]. 

In order to represent the point process model, we discretize the time interval       by 

dividing it into   intervals of width          such that there is at most one spike per interval. 

For        , let    be the indicator of a spike in the interval            , which is one if 

there is a spike and zero otherwise. We let                  denote the spiking activity and 

denote the conditional intensity function    
                 for the repeated trials when 

stimulus S is presented. The likelihood of a neural spike train is defined by finding the joint 

probability density of the data. It is shown that the joint probability of any point process is 

derived from the conditional intensity function by considering as a product of conditionally 

independent Bernoulli events [21]. If again we assume that on an interval      , J spikes are 
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fired by a single neuron at times            for the stimulus S, then the probability density of 

exactly these J spikes in       is: 

                        
               

 

   

            
               

 

   

                         

We can evaluate the probability or the likelihood that the spike train comes from stimulus S by 

calculating the value of            using Equation (2). In this evaluation, the temporal pattern of 

spike train weighted by conditional intensity function is used [22]. In the rest of the paper, we 

use the marked point process to generalize the Equation (2) from single neuron to the population 

level. 

Projection of spike trains onto the likelihood space: If there are P stimuli, any observed 

spike train      must be related to one of the P stimuli S1, S2, ..., SP. Let            , 

           , … ,             represent the true distributions of the spike trains from the P 

stimuli. Let             ,             , … ,              be estimates of the true distributions. 

The likelihood projection of a sample path of spike train is defined as the operation          

resulting in a P-dimensional likelihood vector,       
, as shown in Equation (3). 

     
                                                                                

The distributions             ,             , … ,              are the projecting distributions and 

the P-dimensional space whose coordinates are                   ,                  , 

…,                    is the likelihood space: When the dimension of the observation vector 

      is greater than P, the likelihood projection operation          is a dimensionality reducing 

operation (Figure 1) [23]. 

Properties of spike trains in the likelihood space: By construction of the likelihood space 

from spiking activity of the neurons, a categorization of stimulus is achieved by clustering of the 
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projected neural data and decoding of the stimulus from the spike train. This can be considered 

as a distribution-based classification problem. Likelihood vector representations have the 

following properties that relate to clustering and classification in the likelihood space. 

First, each spike train is assumed as a binary vector that contains temporal information in 

addition to the rate information, If for instance on an interval      , J spikes are fired by a single 

neuron at times            for the stimulus    with conditional intensity function    
   we can 

reinterpret  the Equation 2 which is indicating the dependency of the components of the 

likelihood vector to temporal arrangement of the spikes that is weighted by the value of the 

conditional intensity. 

Second, the projecting distributions represent a set of decision boundaries in the observation 

space that partition it into P decision regions. The decision region    for stimulus    is the region 

defined by: 

                                                                                              

where       represents the a priori probability of stimulus   . The decision regions defined by 

Equation (4) may consist of several disconnected regions [23]. In the likelihood space, these 

regions are projected onto a region    defined by: 

      
             

   
                   

   
                                                           

Equation (5) shows that if       
 

 
and        

  both lie within    then,        
             

 
 
lies 

in    for any      , thereby proving that the region    is convex and therefore connected. 

Finally, in the observation space, the optimal minimum-error Bayesian classifier is given by 

the rule that      is classified as belonging to the stimulus    such that   indexes the stimulus 

with the largest value for                   [23]. A classifier that uses estimated distributions can 

be equivalently stated in terms of log-likelihoods as                           . Classification 
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between any two stimuli    and    is done as Equation (6). By considering              

         and     
  a vector of 1 in the    component and -1 in the     component and 0 in the 

other components, Equation (6) can be redefined in the likelihood space as Equation (7) which is 

a simple linear discriminant with a slope of unity. 

                                                                                                 

               
      

                                                                      

It is thus possible to define a classifier in the likelihood space that performs identically to a 

Bayesian classifier based on the projecting distributions in the observation space. It follows that 

the performance of the optimal classifier in the likelihood space cannot be worse than that in the 

observation space. It also follows that if the projecting distributions are the true distributions of 

the stimulus, then the optimal classification performance in the likelihood space is identical to 

the optimal classification performance in the observation space [23]. 

Extended Kalman filtering of a point process: The state space point process filtering 

approach is used for optimal estimation of parameters. In this approach, the counting process 

      is used by an observation equation as: 

                                                                                         
 

 

 

where      is a zero mean error process that is the residual between a point process and its 

expectation. We construct a discrete time version of the observation Equation (8) for a fine 

partition of the observation interval, linearize its expected value as a function of the state process 

by using the linear terms of a Taylor expansion about the one-step prediction mean, and add 

Gaussian white noise errors as Equation (9). 
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where in the Equation (9)              
  

  
           

 and the Gaussian error term     should be 

selected so as to have similar statistical properties of the observation distribution. The variance 

of the discrete time approximation to the point process model is    , which is unknown. Since   

is sufficiently fine the             might be a good choice. The state equation in Equation 

(10) is the Gaussian linear stochastic system where   is a zero-mean Gaussian noise with 

covariance matrix   . 

                                                                               

We model the conditional intensity function in terms of the state process as 

                                                                                  

In this kind of modeling, the history dependency in spiking activity within a trial is defined in 

terms of state process and the spiking activity between trials is independent. The exponential 

function is used as a parametric model for conditional intensity to ensure that the    is strictly 

positive [24]. 

We apply the Kalman filtering method for parameter estimation [24]. It follows from the 

theory of point processes, that by taking the discrete approximation of the joint probability 

density of the spike train on the specific interval            , the probability mass function of 

the observation equation for our state-space model is defined as: 

                                                                             

We define                   as all the observation in the interval             across all 

  trials,     
            and              are the parameters of interest. 

A standard approach for formulating state-space estimation algorithms uses the Bayes’ rule 

and Chapman–Kolmogorov equations [25]. For the model defined in Equation (9) and (10), the a 
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priori pdf is obtained from Equation (13) and the a posteriori pdf is obtained from Equation 

(14). 

                                           
 

                                          

           
                             

                          

                                               

Equations (13) and (14) are a recursive system for computing the posterior density           . 

The first term in the numerator of Equation (14) is the probability mass function of the 

observation process in Equation (12), the second term is the one-step prediction density defined 

in Equation (13) and the denominator is a normalizing constant that ensures that the posterior 

probability density integrates to one. The challenge of this problem is to evaluate Equations (13) 

and (14) for the observation and system models in Equations (9) and (10). 

Let        and       define the mean vector and covariance matrix of the Gaussian 

approximation in Equation (13), and      and      be the mean vector and covariance matrix of 

the Gaussian approximation in Equation (14). The state transition model in Equation (10) is 

sufficient to compute the one step prediction probability densities [26, 27], 

                                                                          

we write the posterior probability in the interval             by applying a Gaussian 

approximation. 
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The maximum a posterior estimate of the state is defined by the  
              

   
 
     

   
   and 

this relation should be approximately true for any value of     
   

[26, 28]. We can therefore 

choose any specific point to evaluate this expression. 

Evaluating at   
           and rearranging the Equation gives [27, 28], 

                
       

   
 
      

                                                          

Since                     
    , we have 

                                                                                       

and also we know that,                 
    . In the Kalman filtering framework, the 

updated a posteriori covariance is 

                 
     

      

   
 

 

      
      

   
 

 

 
      

                                

Thus far, the Kalman filter is completely derived for point process observation [27]. 

Marked point process modeling of a population: We consider a population of P neurons, 

responding simultaneously to a presentation of a stimulus. Their response are denoted by a 

vector     
         

      
        

   where     
 

  represents the stochastic response of the     

neuron to a stimulus. The stimulus state is denoted by the scalar variable S, which is discrete in 

our case and selected with uniform probability from a stimulus set. 

In order to find the probabilistic model for the populations of neurons, we apply the marked 

point process theory. Let (t1, κ1), ..., (tk, κj) be the observation of P neuron over the interval [0,T]. 

The    is the spike instant in the pooled trains and the    is the label of the neuron which fire at 

time    [21, 29]. The log likelihood function           
        of such a realization may be 

expressed in the form of the marked point process. 
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In this assumption, the marked point process is the combination of two independent processes. 

The ground process which is the result of pooling all the spikes in the interval [0,T], and the 

marked process which is the result of observing the label of the fired neuron at any spike instant. 

The conditional intensity function of population   
         can be written as Equation (21) where 

   
       is the intensity of the ground process, and             is the intensity of a mark process 

at given time t. 

  
            

                                                                                         

The conditional intensity of the ground process is modeled with the sum of the intensities of the 

neurons in the ensemble Equation (22). The mark process that determines to which neuron the 

spike time should be attributed is randomly sampled for each spike time from a multinomial 

distribution with probability parameter as indicated in Equation (23) 

   
          

        

 

   

                                                                                

              
         

       

 

   

 

  

                                                               

By inserting the Equations (22) and (23) in (21) and substituting Equation (21) in (20), the Log-

Likelihood function for marked point process model of P neurons in the population while the 

neurons observing the stimulus S can be written as Equation (24) [21, 29]. 

          
               

  
         

 

   

 

   

      
  

         

   
             

   

    

 

   

       
    

 

   

 

   

       

The Equation (24) is an extension of Equation (2) and can estimate the probability of observing 

response vector     
    for the populations of neurons. 
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Information theoretic interpretation of spike trains in the likelihood space: Suppose a 

single neuron is responding to the stimulus set            with the distributions of the spike 

trains            ,            , … ,            . For any set of observations 

      
         

           
   while the stimulus    was presented, if we consider the vector projected 

onto the likelihood space and scale each component with the probability distribution of the 

responses averaged across stimuli          
 

 
            

 
   , we can write the expectation 

of the vector with respect to             as: 

                 
           

        
      

           

        
       

  
 

    
               

                 
                                           

            
                       

              

          

 

   

                                     

where       is the information specifically conveyed about stimulus    which is a direct 

quantification of variability in the responses elicited by that stimulus, compared to overall 

variability. By projecting all observations onto the likelihood space and scaling each component 

to the average response, we can define the distance between two stimuli    and    with respect to 

two different spiking activity patterns     
   ,     

    in the repeated trials as a difference between 

the information specifically conveyed about the two stimuli. 

           
       

      
      

       

  
    

        
       

  
    

      
       

      
                      

Goodness-of-fit tests: We use the time-rescaling theorem to construct a goodness-of-fit test 

for a neural spike data model. Given a point process with conditional intensity function 

                and occurrence times            where        , if we define    
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, then these    are independent, exponential random variables with rate 

parameter one [10]. A common approach to measuring agreement between the model and the 

data is to construct a Kolmogorov-Smirnov (KS) plot. The KS plot is a plot of the empirical 

cumulative distribution function (CDF) of the rescaled times against an exponential CDF. If the 

conditional intensity model accurately describes the observed spiking data, then the empirical 

and model CDFs should roughly coincide, and the KS plot should follow a 45
°
 line. If the 

conditional intensity model fails to account for some aspect of the spiking behavior, then that 

lack of fit will be reflected in the KS plot as a significant deviation from the 45
°
 line. Confidence 

bounds for the degree of agreement between a model and the data may be constructed using the 

distribution of the Kolmogorov–Smirnov statistic [30]. 

Multidimensional scaling: Multidimensional scaling is a set of data analysis techniques that 

display the structure of distance-like data as a geometrical picture. Each object or event is 

represented by a point in a multidimensional space. The points are arranged in this space so that 

the distances between pairs of points reflect the similarities among the pairs of objects. That is, 

two similar objects are represented by two points that are close together, and two dissimilar 

objects are represented by two points that are far apart. A dissimilarity matrix must be real and 

symmetric with zeros along the diagonal and positive values elsewhere. In this paper, the 

classical multidimensional scaling is implemented by constructing a 2-dimensional space using 

the eigenvectors of the dissimilarity matrix corresponding to the two largest eigenvalues [31]. 

Recordings and stimuli: In a preparatory aseptic surgery, a block for head fixation
 
and 

recording chamber were anchored to the dorsal surface of
 
the skull. The position of the recording 

chamber was determined
 
stereotaxically referring to the magnetic resonance images (MRIs)

 

acquired before the surgery. Action potentials of single cells
 
were recorded extracellularly with 
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tungsten electrodes (FHC,
 
ME) from the IT cortex while

 
the monkey was performing a fixation 

task. The electrode was
 
advanced with an oil-driven manipulator (Narishige) from the

 
dorsal 

surface of the brain through a stainless steel guide
 
tube inserted into the brain down to 10-15 mm 

above the
 
recording sites. Recording positions were evenly distributed

 
at anterior 15-20 mm over 

the ventral bank of the superior temporal sulcus and
 
the ventral convexity up to the medial bank 

of the anterior
 
middle temporal sulcus with 1-mm track intervals as illustrated in Figure 2. The

 

recording was not biased by response properties. The action
 
potentials from a single neuron were 

isolated by
 
an offline sorting algorithm. 

Responses of each cell were recorded with stimuli presented in a pseudorandom
 
order. The 

stimulus set was repeated 49 ± 2 (median, 50)
 
times for each recording site. The sequence of 

stimuli changed
 
randomly in each repetition, and also for different recording

 
sites, to avoid any 

consistent interaction between successively
 
presented stimuli. The stimuli were gray scale 

photographs of
 
natural and artificial objects isolated on a gray background.

 
The size of the larger 

dimension (vertical or horizontal) of
 
each stimulus was 7° of visual angle. 

The monkey had to maintain fixation within ±2° of
 
a 0.5° fixation spot presented at the center 

of the display.
 
The eye position was measured by an infra-red eye-tracking system

 
(i_ rec, 

http://staff.aist.go.jp/k.matsuda/eye/), which allowed
 
a precision of 1 deg or less for the 

measurement of eye position [32]. 

Ethics statement: All experimental procedures complied with the guidelines of the National 

Institutes of Health and the Iranian Society for Physiology. The use of non-human primates in 

this research was also in accordance with the recommendations of the Weatherall report, “the use 

of non-human primates in research”. All surgical procedures were performed under sodium 

pentobarbital anesthesia, and all efforts were made to ameliorate suffering of animals. The study 

http://staff.aist.go.jp/k.matsuda/eye/
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protocol was approved by the ethics committee of School of Cognitive Sciences (SCS), Institute 

for Research in Fundamental Sciences (IPM) under permit number 08-06-83132001. 

 

Results 

In order to illustrate some of the properties of the likelihood space, the neural data of spiking 

activity from the inferior temporal cortex neurons of a macaque monkey is used. Each stimulus is 

presented for 300 ms and followed by 700 ms inter-stimulus blank interval. A 100 ms interval 

before stimulus presentation is recorded for the purpose of baseline activity study. Category 

selective neurons are entered in this study and the face selectivity is the most important feature 

for the neuron selection [32, 33]. Recording areas and the average firing rate’s response of the 

neuronal population are illustrated in Figure 2. 

Based on conditional intensity function model, point process filtering is applied and model 

parameters are optimally estimated. The stimulus effect in the conditional intensity format for the 

visual object is optimally estimated with 95% goodness-of-fit criteria as shown in Figure 3. The 

conditional intensity is used for the likelihood function estimation for each stimulus. The spike 

trains of the face selective neuron are projected onto the likelihood space (Figure 4). The 

dimension of the likelihood space is equal to the number of the stimuli; it can be created for any 

combinations of the stimulus set. Figure 4(A) shows the projection of the neural activity of the 

inferior temporal cortex when the human face and car pictures are presented to the animal. In 

Figure 4(B), a three-dimensional likelihood space is shown for the presentations of human face, 

dog face, and car to the same neuron. 

In order to evaluate the “closeness” of the spike trains of the same stimulus after projecting 

them onto the likelihood space, the multidimensional scaling technique is applied to pair-wise 
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comparisons of the entities. The multidimensional scaling allows us to visualize closeness of 

spike trains by representing them in a low-dimensional space [31]. The results of the 

multidimensional scaling analysis on normalized proximity matrices are shown in Figure 5. 

Figure 5(A) is an illustration of the same process for the spike train vectors before projection. 

Figure 5(B) shows the results of analysis on the distance measure in the likelihood space 

between any pairs of projected points in two dimensions. The Fisher’s discriminant ratio is used 

to quantify the separability of the clusters in the two spaces. This criterion shows about 26% 

improvement in the separability of the clusters in the likelihood space on average. The amplitude 

of the difference between any pairs of vectors is defined as a distance in the observation space. 

The projected points represent each stimulus as a cluster. The clusters can be considered as 

estimates of representation of the neuron from stimulus space. The accuracy of the representation 

depends on the efficiency of the estimation method and the number of the spike trains observed. 

We use the neural response of the 100 neurons recorded from the IT cortex of the monkey 

while doing the passive fixation task [33]. The spike trains of the neural ensemble in response to 

the human faces, cars, and dog faces for 50 repeated trials in 70-270 ms time intervals are 

modeled using marked point process, projected onto the likelihood space, and shown in Figure 6. 

By scaling each component with the response average and estimating the expectation of the 

component in the log-likelihood space, we estimate the stimulus specific information based on 

the center of each cluster. The center of the clusters are used for representing each stimulus 

category and the relative geometrical location of the cluster is considered as an interpretation of 

the neuronal population from the observed stimulus set. 

In order to have a better comparison between the rate-based framework and temporal-based 

analysis, we use the neuronal activity of the same population in the same interval to extract 
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similar result. We estimate the average firing rate of any individual neuron in 70-270 ms time 

interval then arrange them in a vector. The vectors are normalized and divided by their Euclidean 

lengths. We calculate a correlation-based distance measure and construct a relative geometrical 

interpretation of the different categories [34]. In Figure 7(A)-(B), the normalized distance 

measure based on similarity in the rate-based framework and the likelihood space framework are 

shown. 

Based on the distance measurement and similarity, we use another analysis to compare the 

two frameworks. We use a 100 ms sliding time window with a step size of 10 ms and find the 

distance between two different categories in each step. In Figure 8, the distance or the 

dissimilarity between human face and car category is estimated in 100 ms sliding time window 

with 10 ms step size for the rate-based and the likelihood-space-based frameworks. We mark 

times of stimulus presentation and maximum distance occurrence in both frameworks. We use 

latency of maximum dissimilarity acutance as a criterion for temporal analysis of maximum 

information transmission. 

 

Discussion 

In this research, a new approach for analysis of spike trains is introduced where each spike 

train is considered as a binary vector and projected onto a lower-dimensional space. Many 

covariates are sources of spike generation in a single neuron and the observed spike trains are 

variable. The Kalman filtering based point process modeling approach and the state space 

generalized linear models help us to optimally estimate the conditional intensity function of the 

point process associated with each neuron for any stimulus. The time-rescaling theorem is used 

to construct goodness-of-fit tests for a neural spike data model. We model the spiking activity of 
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the population of neurons using a single marked point process that has a conditional intensity 

which is the sum of the conditional intensities of all of the neurons in the population. To this end, 

class conditional distributions of stimuli are estimated and each observed vector is projected onto 

a specific point in the likelihood space. 

The likelihood based approaches, which use the probability of neuronal response to a given 

stimulus, are widely used for fitting models and assessing their validity [35, 36]. They can be 

derived for several types of neural models and used for optimal decoding [37, 38]. In this study, 

we use the likelihood function to project spiking activity of neurons onto a new space, which 

might be a different application of the likelihood-based approach in spike train analysis. This is a 

new probabilistic interpretation of the spike train that enables us to apply the advanced signal 

processing and pattern recognition methods on neuronal data at the single neuron and population 

levels. 

Projections of spike trains onto the likelihood space have important advantages. First, since 

each spike train or observed vector is directly used in the projection process, the temporal 

information ignored in the conventional methods is considered here. Secondly, the projected 

vectors are more separable in the likelihood space and also are less dependent on the accuracy of 

estimates of class conditional distributions thus, they may improve the performance of 

distribution-based classifiers. Finally, since the coordinates of the likelihood space are the stimuli 

conditional likelihood and the numbers of stimuli are less than the dimensions of the spike trains’ 

binary vector, the projection is a dimension reduction process. 

We introduce a new and novel interpretation of stimulus specific information conveyed by a 

neuron population. We extend the use of information theory to analyze spike trains by modeling 

the joint probability density function between the ensemble spiking activity and the biological 
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signal explicitly and to compute stimulus specific information from the probability density 

function. In this approach, the direct parametric estimation of the conditional probability is used 

for the information estimation, which might be more accurate than rate-based approaches. We 

show that the expectation of each component in the likelihood space is proportional to the 

amount of information it conveys about a specific stimulus. Therefore, the difference between 

information content of the population about a specific stimulus can be considered as a distance 

metric and used for similarity measurement. 

The limitations of the current study are: 1) the need for more observations compared to the 

conventional methods; 2) dependency of the model’s accuracy in the population level to 

simultaneous observation of the neurons; and 3) complicate mathematics with more 

computational load with respect to conventional rate based spike train analysis such as peri-

stimulus time histogram. 

While this study establishes the feasibility of constructing likelihood space for the neuronal 

populations as a linear stochastic dynamical system with point process observation models, 

several extensions for the current framework are possible. First, there is a possibility to extend 

the current algorithm to a nonlinear state space model for computing smooth estimation of state 

estimate [39, 40]. Secondly, biophysically more realistic models can be used which are based on 

linear filtering stage followed by a noisy leaky integrate-and-fire spike generation mechanism 

[35, 36]. Thirdly, in our marked point process modeling of the population, we assumed that the 

neurons were independent given the value of the state process. Considering possible functional 

dependency among the neurons could broaden the application of the current framework to the 

various classes of the neuroscience problems. Fourthly, the emergence of multi-electrode arrays 

and the recent progress in multi-electrode recording enable us to interface with populations of 
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neurons simultaneously [41, 42]. The marked point process modeling and likelihood space 

representation of the population might be applicable in real time observations such as neuro-

prosthetic devices [43, 44]. Fifthly, a novel extension of the use of information theory to analyze 

multiple spike trains from developing probability models of joint spiking activity might be useful 

for investigating behavior of neuronal populations in dynamic stimulus coding. Finally, by 

collecting enough observation from the neuronal population, the representation of the population 

from the stimulus space may be demonstrated and the problems such as neural mechanism of 

stimulus categorization can be addressed in this framework. 
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Figure Legends 

Figure 1. Projection of spike train onto likelihood space. Sample response of the neuron to the 

stimulus presentation in the raster plot format. The transformation of the spike train from the 

observation space into a likelihood space is illustrated. Each point in the new space is the 

projection of the binary vector of spike train with respect to the stimuli conditional distribution. 

 

Figure 2. Recording from inferior temporal cortex. Recording positions 
 
at anterior 15-20 mm 

over the ventral bank of the superior temporal sulcus and
 
the ventral convexity up to the medial bank of 

the anterior
 
middle temporal sulcus with 1-mm track intervals and the average firing rate’s response of 

the neuronal population. 

 

Figure 3. Model parameter estimation. Sample responses of a neuron from inferior temporal 

cortex of a macaque monkey while the animal is doing the passive fixation task. The raster plot 

and the conditional intensity function are shown for a human face and a car. 

 

Figure 4. Projection onto likelihood space. (A) Reconstruction of likelihood space for the 

neural activity of the inferior temporal cortex, while the human face and car pictures are 

presented. (B) The likelihood space for the same neuron while presenting human face, dog face, 

and car pictures. 

 

Figure 5. Multidimensional scaling in observation space and likelihood space. 

Multidimensional scaling technique is used to illustrate capability of the likelihood space in 

increasing the sreparability of the clusters. (A) The distance measurement and multidimensional 
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scaling results for the pairs of spike trains from the human face and car stimuli in the observation 

space. (B) The distance measurement and multidimensional scaling results for the same spike 

trains after projection them onto the likelihood space. 

 

Figure 6. Population based likelihood reconstruction. The likelihood space representation for 

the populations of neurons while the human face, dogface, and car pictures were presented. 

 

Figure7. Between stimulus distance measure. The likelihood space and correlation based 

representations of stimulus space for the populations of neurons while presenting of human face, 

dog face and car pictures. The normalized neural representation of distance in the correlation 

based (A) and likelihood space (B). 

 

Figure 8. Dynamic between-stimulus distance measure. (A) Dynamic distance measurement 

between pairs of stimuli from two different categories in 100 ms sliding time window with 10 ms 

sliding step based on correlation distance. (B) Dynamic distance measurement for the same 

stimulus pair with 100 ms sliding time window and 10 ms sliding step based on stimulus distance 

in the likelihood space. 

 

 

 

 

 

 


