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Abstract The main objective of this paper is to present

methods and results for the estimation of parameters of our

proposed integrated magnetoencephalography (MEG) and

functional magnetic resonance imaging (fMRI) model. We

use real auditory MEG and fMRI datasets from 7 normal

subjects to estimate the parameters of the model. The MEG

and fMRI data were acquired at different times, but the

stimulus profile was the same for both techniques. We use

independent component analysis (ICA) to extract activa-

tion-related signal from the MEG data. The stimulus-

correlated ICA component is used to estimate MEG

parameters of the model. The temporal and spatial infor-

mation of the fMRI datasets are used to estimate fMRI

parameters of the model. The estimated parameters have

reasonable means and standard deviations for all subjects.

Goodness of fit of the real data to our model shows the

possibility of using the proposed model to simulate realistic

datasets for evaluation of integrated MEG/fMRI analysis

methods.

Keywords Electroencephalography (EEG) �
Magnetoencephalography (MEG) �
functional magnetic resonance imaging (fMRI) �

Integrated modeling �
Independent component analysis (ICA)

Introduction

Magnetoencephalography (MEG) and functional magnetic

resonance imaging (fMRI) have complementary spatial and

temporal resolutions. fMRI has good spatial resolution, but

poor temporal resolution due to the limited rate of change

in the hemodynamic response. On the other hand, MEG has

good temporal resolution, but its spatial resolution is poor

due to the inverse problem being ill-posed (Hämäläinen

et al. 1993). Integrated MEG/fMRI analysis should

improve the overall spatiotemporal resolution of the results

based on the fact that MEG and fMRI are different views of

a common source (neural activity) (Dale and Halgeren

2001; Dale et al. 2000; Horwitz and Poeppel 2002;

Korvenoja et al. 2001; Liu et al. 1998, 2006; Martinez-

Montes et al. 2004).

Although MEG and fMRI signals originate from com-

mon sources (neural activities), there may be differences

between the spatiotemporal responses of the two techniques

(Nunez and Silberstein 2000). An integrated bottom-up

model based on physiological principles can illustrate the

relationship between MEG and fMRI. However, there are

limited works about MEG, electroencephalography (EEG),

and fMRI integrated modeling in the literature (Babajani

et al. 2005; Babajani and Soltanian-Zadeh 2006; Daunizeau

et al. 2007; Riera et al. 2005, 2006, 2007).

In the integrated model proposed in (Riera et al. 2005), a

two-dimensional autoregressive model with exogenous

variables (ARx) was introduced to describe the relation-

ships between synaptic activity and hemodynamic

responses. A static nonlinear function was used to describe
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the electro-vascular coupling through a flow-inducing sig-

nal. Their assumption about a linear relationship between

cerebral blood flow (CBF) and the Blood Oxygen Level

Dependent (BOLD) signal is not generally valid (Buxton

et al. 1998), which they corrected (Riera et al. 2006) using

the extended Balloon model (EBM) (Friston et al. 2000).

We proposed an integrated MEG/fMRI model (Babajani

et al. 2005) where post-synaptic potentials (PSPs) were the

main link between MEG and fMRI (Fig. 1). For a given

external stimulus in this model, a linear model represented

the number of active PSPs at each point in time. Several

parameters of PSPs were introduced and modeled using

random variables. Different aspects of PSPs were consid-

ered for constructing the MEG and fMRI signals from the

overall synaptic activities. The MEG signal was con-

structed using the resultant overall synaptic activities and

solution of the forward problem. The fMRI signal was

constructed using the resultant overall synaptic activities as

the input of the EBM. Using simulation studies, we showed

that the parameters of the model can explain conditions for

which there is a detectable fMRI signal in an area while

this area may be silent for MEG and vice versa.

Based on our proposed extended neural mass model, we

introduced another integrated model of MEG/EEG and

fMRI signals based on the physiological principles of the

cortical minicolumns and their connections (Babajani and

Soltanian-Zadeh 2006). In this model, MEG signals are

generated by synaptic activations of the pyramidal cells

and subsequent currents in minicolumns. By introducing a

relationship between the stimulus and the overall neural

activity and using it as the input of the EBM, we extracted

the fMRI signal from the proposed extended neural mass

model. We validated the proposed model by comparing the

simulation results with the experimental results.

The main aim of the current paper is to determine the

parameters of our proposed model (Babajani et al. 2005)

using real MEG and fMRI datasets. While it was impos-

sible to record MEG and fMRI signals simultaneously,

these data were gathered from 7 normal subjects using

the same auditory stimulus as shown in Fig. 2. After

calculating the average MEG block response, we used

independent component analysis (ICA) to extract the MEG

signal of the brain activity occurring in the primary audi-

tory cortex. This signal was used to estimate parameters of

the linear filter in Block 1 of Fig. 1. The corresponding

spatio-temporal sequence of the fMRI activation, measured

in the primary auditory cortex, was used to estimate the

fMRI parameters of the proposed model. The proposed

model with estimated values of its parameters can be used

to simulate realistic datasets for evaluation of the integrated

MEG/fMRI analysis methods.

The organization of the paper is as follows. The sum-

mary of the proposed model in (Babajani et al. 2005),

description of the real auditory datasets, and estimation of

the parameters of the proposed model are presented in next

section followed by Discussion and Conclusions.

Estimation of the Model Parameters

Our proposed integrated MEG/fMRI model (Babajani et al.

2005) is shown in Fig. 1. For a given external stimulus,

N(t) is the number of active post synaptic potentials (PSPs)

in the corresponding active cortical area and is calculated

using a linear temporal filter. The overall generated dipoles

in the area can be calculated using the following equation:

�QðtÞ ¼ KM � NðtÞ ð1Þ

where KM is a fixed stimulus-related parameter and �QðtÞ is

the overall generated dipoles in the active cortical area. The

generated MEG signal is calculated using Eq. 1 and the

solution of the forward problem as follows:

BðtÞ ¼ G �QðtÞ ð2Þ

where G is the lead field matrix and B(t) is the measured

field by the MEG sensors (Baillet et al. 2001). For the

forward solution, we utilize a spherical head model with

the sphere center calculated for six separate skull regions

(left and right anterior, left and right central, and left and

right posterior). For each local sphere, the radius and

Fig. 1 Schematic diagram of

the proposed integrated MEG

and fMRI model (Babajani

et al. 2005)
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sphere center were determined by performing a least square

fit of the sphere to the local skull surface digitization points

(Moran et al. 2001).

Referring to Eqs. 19 and 21 in (Babajani et al. 2005), the

overall synaptic activities due to the external stimulus can

be calculated as follows:

�uðtÞ ¼ Kf � NðtÞ
Kf ¼ um

maxðNÞ

�
ð3Þ

where �u is the overall synaptic activities in the active

cortical area, um is the synaptic activity that produces the

maximum output in the extended Balloon model, max(N)

shows the maximum number of the active PSPs in the

active area, and N(t) represents the number of active PSPs.

The calculated overall synaptic activity in (3) was used as

the input of the EBM with the following equations:

€f ¼ e�uðtÞ � _f=ss � ðf � 1Þ=sf

_v ¼ 1
s0
ðf � v1=aÞ

_q ¼ 1
s0

f 1�ð1�E0Þ
1
f

E0
� qv

1
a�1

� �

yðtÞ ¼ V0ðk1ð1� qÞ þ k2ð1� q=vÞ þ k3ð1� vÞÞ

8>>>><
>>>>:

ð4Þ

where the blood flow f, the blood venous volume v, and the

veins deoxyhemoglobin content q are three state variables

normalized to their rest values and y is the BOLD output

signal. The neural efficiency (e), the signal decay (ss), the

autoregulation (sf), the venous transit time (s0), the stiffness

(a), the oxygen extraction at rest (E0), and the resting blood

volume fraction (V0) are the physiological parameters of the

EBM. For a 1.5 T scanner and TE = 40 ms, parameters k1,

k2, and k3 have been evaluated to be k1 = 7E0, k2 = 2, and

k3 = 2E0-0.2 in (Buxton et al. 1998).

Auditory Task Data

We need real MEG/fMRI datasets to estimate the parame-

ters of the model. Some parameters of the model like KM in

(1) are dependent on the kind of stimulus. For example, we

expect different spatial responses (different KM) for visual

and auditory stimuli. In this study, we estimate the param-

eters of the model using the auditory stimulus shown in

Fig. 2. However, the procedure for estimating the parame-

ters of the model is the same for other types of stimuli. One

block of the auditory on/off stimulus is shown in Fig. 2. The

first 12 s consist of ‘‘tones on’’ followed by 12 s of ‘‘tones

off.’’ During the ‘‘tones on’’ period, half second tone bursts

with a 15 ms rise/fall time are presented at a rate of one per

second. Three tone bursts are presented sequentially for

each of 4 tone frequencies in the following order: 500, 750,

1,000, and 1,200 Hz. While it is impossible to gather MEG

and fMRI data simultaneously, this auditory block stimulus

is used for both MEG and fMRI studies of 7 healthy subjects

(4 males and 3 females, from 27 to 44 years old). In addi-

tion, 3-D anatomical MRI data is used for co-registering

fMRI and MEG coordinates. Specifications of the acquired

MRI and fMRI data from the subjects are given in Table 1.

For the fMRI data, we used a 1.5 T GE scanner and the

echo planner imaging (EPI) sequence with 64 by 64 data

acquisition matrix (see Table 1 for details). Auditory

stimuli are presented through air conductance tubes to

headphones to reduce external noise. We utilized the air

tubes just for gathering the fMRI datasets. The phase delay

due to sound propagation in the tube is on the order of

10 ms considering 3–4 m length of the tubes and 345 m/s

speed of sound. This delay is negligible in the case of the

fMRI signal. The MEG data is gathered by a 148-channel

whole head Neuromagnetometer (4D Neuroimaging).

Measurements are taken inside a magnetically shielded

room located in the Neuromagnetism Laboratory of Henry

Ford Hospital (HFH), Detroit, Michigan, USA. Fifty blocks

(epochs) of the MEG data are acquired for all subjects,

sampled at 508.63 Hz, and initially band-pass filtered

between 0.1 and 100 Hz before disk storage.

Preprocessing

We use statistical parametric mapping (SPM) for activation

detection of the fMRI data. After discarding the first few

Fig. 2 Illustration of one epoch (block) of the stimulus profile for an

auditory excitation. Each epoch contains 12 s of tones on and 12 s of

tones off. During the tones on period, 3 tone bursts were presented

with a 15 ms rise/fall time at a rate of one per second for each of

4 tone frequencies 500, 750, 1,000, and 1,200 Hz. MEG data of all

subjects contained 50 epochs, but the number of fMRI blocks was

different for different subjects (see Table 1)
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volumes, we performed realignment and co-registration

using SPM5. For finding the active voxels, the stimulus is

convolved with three basis functions (HRF, HRF time

derivative and HRF dispersion). A cluster of voxels above

a statistical threshold is selected for each subject, focusing

on the left and right primary auditory cortices. For each of

the active voxels, the average BOLD signal over all blocks

is calculated after removing DC offset and linear trend. In

the next section, we use this average BOLD signal to

estimate fMRI parameters in these voxels for all subjects.

The detected activation of a representative subject co-

registered to MRI is shown in Fig. 3.

We use MEG-Tools (http://www.megimaging.com/) for

co-registration of the MEG data with the 3-D anatomical

MRI data. The MEG localizations are computed with ref-

erence to the Cartesian coordinate system defined by a set

of three anatomical landmarks (fiducial points): the right

and left external meatus or pre-aurical and nasion. Prior to

the MEG scan, the head surface is digitized using laser fast

track scanning. The head digitization points (about 3,000

points) are used to ensure a precise registration, when the

points laid on the scalp surface of the MRI scan.

The MEG data were band-pass filtered 0.5–30 Hz before

analysis. For each subject, 50 epochs of MEG data were

recorded. The duration of each epoch is 24 s, similar to the

stimulus profile shown in Fig. 2. Bad epochs (blocks) con-

taining eye blinks were discarded, and the remaining epochs

averaged to obtain the MEG signal time-locked to tone

presentations with a sufficient signal to noise ratio (SNR) for

this study. As shown in Fig. 4, we did not extract unique

MEG signals for each separate tone frequency as required

for imaging the tonotopic organization of the auditory cor-

tex, where locations of responses in the auditory cortex for

these tone frequencies vary systematically with frequency

by approximately 5 mm or less (Talavage et al. 2004).

Rather, after discarding malfunctioning channels, we per-

formed ICA signal separation to extract the most significant

signal from the primary auditory cortex that was common to

all tone frequencies. In addition, ICA was used to extract

heart artifact from the data. Both ‘‘Fast-ICA’’ and AMUSE

(Algorithm for Multiple Unknown Source Extraction)

(Tong et al. 1991) algorithms were evaluated for extracting

MEG signals from the primary auditory cortex from these

MEG datasets. We obtained a higher SNR from AMUSE

compared to ‘‘Fast- ICA’’, confirming superiority of

AMUSE for abstracting long duration signals with signifi-

cant autocorrelations over time, as reported in (Moran et al.

2004). Therefore, AMUSE was used to extract MEG signals

from the primary auditory cortex of all subjects.

The ICA components generated by applying AMUSE to

the MEG data were sorted according to the amount they

contributed to the time-correlated signal power of the

AMUSE algorithm. The three most powerful components

of the MEG data of a representative subject are illustrated

Table 1 Specification of the MRI and fMRI datasets used for estimating the parameters of the proposed model

Subject # Gender Age MRI fMRI

Resolution Voxel

size (mm3)

Resolution Voxel

size (mm3)

Volume

Number

TR

(s)

TE

(ms)

Number of

stimulus block

1 Female 44 256 9 256 9 60 0.94 9 0.94 9 2.5 64 9 64 9 14 3.75 9 3.75 9 5.0 132 3 40 16.5

2 Female 40 256 9 256 9 60 0.94 9 0.94 9 2.5 64 9 64 9 16 3.75 9 3.75 9 5.0 198 2 30 16.5

3 Male 33 256 9 256 9 66 0.94 9 0.94 9 2.5 64 9 64 9 16 3.75 9 3.75 9 5.0 198 2 30 16.5

4a Female 41 256 9 256 9 62 0.94 9 0.94 9 2.5 64 9 64 9 14 3.75 9 3.75 9 5.0 198 2 30 16.5

5a Male 33 256 9 256 9 64 0.94 9 0.94 9 2.5 64 9 64 9 16 3.75 9 3.75 9 5.0 198 2 30 16.5

6 Male 27 256 9 256 9 154 0.94 9 0.94 9 1.0 64 9 64 9 34 3.75 9 3.75 9 3.5 120 2 30 10

7 Male 35 256 9 256 9 154 0.94 9 0.94 9 1.0 64 9 64 9 34 3.75 9 3.75 9 3.5 120 2 30 10

a Two fMRI datasets are acquired

Fig. 3 Illustration of the detected activation from the fMRI data of

subject #2 co-registered to 3-D anatomical MRI data after removing

single active voxels
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in Fig. 4 (first component has the maximum power). As

illustrated in Fig. 4a, the first component has the highest

temporal correlation with the stimulus profile. In addition,

in Fig. 4b, the array of MEG amplitudes of this component

is very similar to a contour map of MEG data from two

current dipole sources with one in the left and right primary

auditory cortices of the subject’s brain. In contrast, the

spatial patterns of the other two components are primarily

composed of noise and cortical activation distant from the

primary auditory cortices. Similarly, for each of the other

subjects, only one ICA component was well-correlated

with a signal from primary auditory cortices. This com-

ponent is hereafter called ‘‘main ICA component’’.

It should be noted that multiple cortical areas are

involved in auditory tasks. However, a simple tone stim-

ulus was chosen for this study because the most prominent

activation occurs in the primary auditory area (Salmelin

2007). This is why we were able to extract the primary

auditory activation as the strongest single ICA component.

Parameter Estimation

After registering the MEG coordinates to the 3-D ana-

tomical MRI data, the cortical model is constructed

consisting of about 2,500 cortical locations in the subject’s

gray matter. A spherical head model matched to skull

Fig. 4 Spatiotemporal illustration of the main ICA components of

the MEG signal of subject #2 in Table 1. (a) Stimulus profile and the

three most powerful components of the ICA. The first component is

correlated with the stimulus and we define it as the ‘‘main ICA

component’’ in the text. (b) Spatial pattern of the ICA components

whose temporal pattern is illustrated in a. The left, middle, and right

contour maps are related to the first, second, and third ICA

components in a
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curvature in 6 different brain regions was used to construct

the forward model. We use the main ICA component for

activation detection in MEG. If one component is consid-

ered as the MEG signal in all sensors, the time course of

each sensor will be equal to the time course of this com-

ponent multiplied by a scalar. The spatial pattern of the

ICA component is the value of this scalar at all the sensors.

The contour map of the spatial pattern of a representative

subject is shown in Fig. 4b. We need to solve the MEG

inverse problem for this spatial pattern of MEG amplitudes.

There are several methods in the literature for solving the

inverse problem of EEG/MEG (Baillet et al. 2001). As

explained in preprocessing section, we use MEG-Tools to

co-register the MEG coordinates to the 3-D MRI data and

to construct the cortical model. We use the Multi-Resolu-

tion FOCUSS (MR-FOCUSS) (Moran et al. 2005) method,

which is implemented in the MEG-Tools, to solve the

MEG inverse problem. The MR-FOCUSS is a variant of

the standard FOCUSS algorithm (Gorodnitsky and Rao

1997), which has the ability to find both focal and extended

sources. The detected activation corresponding to the

spatial pattern of Fig. 4b is shown in Fig. 5. As illustrated

in Figs. 3 and 5, the fMRI and MEG detected activations

have appropriate spatial correlation.

For comparing the spatial responses of fMRI and MEG,

detected activations of both techniques are mapped to the

Talairach coordinate system (Talairach and Tournoux

1988). The primary auditory cortex in the temporal lobe is

expected to be involved in processing of the tone stimulus.

Therefore, we restrict the spatial comparison to the acti-

vations in the left temporal lobe (LTL) and right temporal

lobe (RTL). For each technique, two voxels (one in the

LTL and another in the RTL) with maximum activation are

selected and then the center of mass of the activations is

calculated considering all active voxels whose distances

from the maximum voxel are less than 10 mm. Table 2

shows the locations of the activations in the Taliarach

coordinate system. As shown in this table, detected acti-

vations by both techniques for almost all subjects are

located in Brodmann areas 41 and 42, which are the typical

areas involved in the initial perception of tone stimuli

(Salmelin 2007). In addition, the difference between the

spatial responses of fMRI and MEG is small.

Considering the main ICA component, the correspond-

ing MEG signals on the sensors, B(t), can be decomposed

into a spatial array of MEG sensor amplitudes, (b1 ... bm)T,

multiplied by the corresponding time sequence of activa-

tion, IC(t), (the main ICA component).

BðtÞ ¼ b1 ::: bmð ÞT � ICðtÞ ð5Þ

The inverse solution of Eq. 2 gives Q̂ðtÞ ¼ Gþ � BðtÞ
where G+ is the inverse kernel of G. Combining the inverse

solution, Eq. 2, and Eq. 5, we have:

Q̂ðtÞ ¼ Gþ � b1 ::: bmð ÞT � ICðtÞ ð6Þ

Comparing (1) with (6), it can be assumed that N̂ðtÞ /
ICðtÞ and K̂M / Gþ b1 ::: bmð ÞT � Gþð b1 ::: bm ÞT
shows the spatial pattern of KM as the estimated

amplitudes of the sources. It should be noted that the

magnitude of KM depends on the stimulus paradigm, and

the amplitude of this estimated KM cannot be generalized to

other paradigms or other cortical locations.

After calculating N̂ðtÞ from IC(t), it is possible to esti-

mate parameters of the linear filter with the given N̂ðtÞ and

the stimulus. For all subjects, we found that a first order

linear filter generates reasonable estimation results. Thus,

we use the following first order linear filter.

Fig. 5 MEG detected activations of subject #2 after co-registration to

the 3-D anatomical MRI data. (a) 2-D illustration of the detected

activations (axial view). (b) 3-D Illustration of the detected activations
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Tp
dNðtÞ

dt
þ NðtÞ ¼ K Stmðt � TdÞ ð7Þ

where Tp, Td, and K are parameters to be estimated. To

calculate N̂ðtÞ from IC(t), we can consider any value for a

constant scalar ‘‘a’’ as N̂ðtÞ ¼ a � ICðtÞ: According to (7),

the effect of the scalar ‘‘a’’ can be considered in the

parameter K and the unit norm IC(t) can be considered as

N̂ðtÞ: Considering noise, to estimate the parameters of the

above linear filter, we have:

Nðt; hÞ ¼ hðt; hÞ � StmðtÞ
N̂ðtÞ ¼ Nðt; hÞ þ eðtÞ

�
ð8Þ

where e(t) models the physiological and instrumental

noises, N̂ðtÞ is IC(t) calculated from the main ICA

component of the MEG data, and h(t;h) is the impulse

response of the linear filter in Eq. 7 with parameters

h = (Tp, Td, K). Assuming Gaussian noise (e * N (0, R)),

the parameters can be estimated by the maximum

likelihood (ML) method as follows:

ĥML ¼ arg max
h

f ðN̂; hÞ

¼ arg min
h
ð� log½f ðN̂; hÞ�Þ

¼ arg min
h

½N̂ðtÞ � Nðt; hÞ�TR�1½N̂ðtÞ � Nðt; hÞ�
2

:

where f(.) is the probability density function. Finding h
with ML method leads to a weighted least square method

with weight matrix R. Under the white noise assumption

(R = r2I), it leads to minimize the following least square

function:

EðhÞ ¼
X

t

½N̂ðtÞ � Nðt; hÞ�2: ð9Þ

We use the numerical minimization method proposed in

(Ljung 1999) for estimating h = (Tp, Td, K) where a quasi-

Newton method using values of E(h) as well as its gradient

is employed. This method is implemented in Matlab

(http://www.mathworks.com/). The N(t) and N̂ðtÞ for all

subjects are illustrated in Fig. 6. The estimated values of

h = (Tp, Td, K) for all subjects are given in Table 3. The

signal-to-noise ratio related to the estimation of the linear

filter in MEG (SNRM) in this table is defined as SNRM ¼
N̂ðtÞ
�� ��= N̂ðtÞ � NðtÞ

�� ��: It should be noted that SNRM may

rather be considered as a measure of the model fit rather

than an SNR. As illustrated in Fig. 6 and values of SNRM

in Table 3, the MEG data of some of the subjects have low

SNRM and thus the standard deviation (STDV) of the

estimated parameters are a little high. We were able to

slightly increase SNRM and decrease STDV of the esti-

mated values by using higher order linear filters, but it did

not generate much improvement in the variance of the

estimated model parameters.

For estimating the parameters related to the fMRI part of

the model, we use estimation of h = (Tp , Td , K) and

calculate the estimated N(t) according to (7). The overall

Table 2 Locations of the MEG and fMRI activations mapped to the Taliarach coordinate system

Subject # Location of activation in right temporal lobe Location of activation in left temporal lobe

Talariach coordinate MEG Talairach coordinate fMRI Dist.

(mm)

Talariach coordinate

MEG

Talairach coordinate

fMRI

Dist.

(mm)

1 (-62.55, -28.19, 18.08)

BA 42

(-46.1, -30.85, 18.24) BA

41

16.66 (48.99, -40.6, 18.16)

BA 22

(54.86, -32.27, 16.74)

BA 42

10.29

2 (-55.24, -31.23, 19.74)

BA 42

(-51.34, -22.35, 16.92)

BA 41

10.10 (52.38, -13.51, 21.41)

BA 41

(44.56, -13.41, 19.7)

BA 42

8.01

3 (-43.96, -25.38, 16.13)

BA 41

(-53.29, -39.35, 16.21)

BA 22

16.80 (51.15, -35.07, 14.65)

BA 22

(52.49, -46.08, 19.58)

BA 22

12.14

4 (-57.14, -22.26, 17.74)

BA 41

(-45.37, -24.81, 23.76)

BA 41

13.46 (60.89, -28.82, 18.71)

BA 42

(55.09, -38.96, 18.5)

BA 22

11.68

(-59.15, -32.06, 19.89)

BA 42

10.23 (56.27, -46.93, 19.49)

BA 22

18.71

5 (-51.19, -47.31, 19.23)

BA 22

(-55.24, -31.23, 19.74)

BA 42

16.59 (61.58, -37.63, 20.71)

BA 22

(55.43, -22.17, 19.78)

BA 41

16.66

(-47.44, -40.19, 21.16)

BA 22

8.28 (54.86, -32.27, 16.74)

BA 42

9.47

6 (-53.95, -31.3, 19.37)

BA 42

(-47.79, -14.46, 21.15)

BA 41

18.02 (54.86, -32.27, 16.74)

BA 42

(44.56, -13.41, 19.7)

BA 41

21.69

7 (-41.27, -11.16, 20.18)

BA 41

(-50.13, -23.64, 17.57)

BA 41

15.33 (55.55, -26.99, 18.56)

BA 42

(46.02, -30.43, 21.91)

BA 41

10.67

For each technique, two voxels (one in the left temporal lobe and another in the right temporal lobe) with maximum activation are selected and then

the center of mass of the activations is calculated considering all active voxels whose distances from the maximum voxel are less than 10 mm.

Locations of the activation in the Taliarach coordinate system (x,y,z) and the corresponding Brodmann Areas (BA) are illustrated in the table
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synaptic activities �uðtÞ is calculated using N(t) according to

(3) and then the estimated BOLD response in each active

voxel will be generated using �uðtÞ and the EBM in (4).

According to proportionality of N(t) and �uðtÞ in (3) and

considering ‘‘e�uðtÞ‘‘ as input of the EBM in (4), we use

normalized N(t) as �uðtÞ in (4) and the effect of Kf in (3) is

considered in e.
Parameters of the EBM are estimated by minimizing the

error between the estimated and real fMRI signals. The

measured BOLD signal can be modeled as follows:

y ¼ gð�u; gÞ þ e; e�Nð0;RÞ ð10Þ

where gð�u; gÞ is the output of the dynamical system of the

EBM with input �u (overall synaptic activities) according to

(4), g = (e, ss, sf, s0, a, E0, V0) is physiological parameters

of the EBM, and e is the Gaussian measurement noise with

variance R. If the nonlinear effects of the EBM are small

enough, then the effect of physiological noise could be

approximated as additive Gaussian noise and e in (10)

could model both measurement and physiological noises

(Deneux and Faugeras 2006). Using similar steps to derive

Eq. 9, the ML estimation of the parameter g leads to the

following least square estimation assuming white Gaussian

noise (R = r2I):

ĝLS ¼ arg min
g

X
t

½gð�uðtÞ; gÞ � yðtÞ�2 ð11Þ

As described in preprocessing section, the active voxels

for each subject are chosen, and their mean BOLD signal

over all blocks is calculated and assumed as y(t) in (11).

Then, parameters of the EBM are estimated using a

numerical minimization method. A basic question about

the identifiability of the EBM in (4) is that if we know the

system input �u and output y, do we have enough

information to determine unique values for the

parameters? In general, there is no unique solution for

the parameter estimation of the EBM in (4) because the

effects of some parameters on the output do interfere with

those of others (Deneux and Faugeras 2006). For example,

when the input of the EBM is low enough to make the

linear approximation of the model, two parameters e and V0

as the scale factor on the input (e) and that on the output

(V0) have interfering effects. In fact, increasing e could be

compensated by decreasing V0 by the same factor to

Fig. 6 Illustration of the estimated output of the linear filter in Eq. 7 and real MEG signals. Top-left subplot shows the stimulus as input of Eq. 7.

Other subplots show estimated N(t) (red plot) as output of Eq. 7 and real signal (blue plot) as main ICA component from MEG data
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produce exactly the same output. It would not be possible

to estimate these two parameters. Rather, only their product

can be estimated.

For reducing the redundancy, we fix a = 0.33,

E0 = 0.34, and V0 = 0.03 (V0 = 0.06 for subject #6) at

their physiological mean values according to (Friston et al.

2000) and estimate the remaining parameters g = (e, ss, sf,

s0). The optimization procedure for estimating the param-

eters of the EBM using the BOLD signal is shown in

Fig. 7. The sum square error in (11) is the objective

function whose minimization gives the optimal values of

the unknown parameters. The Nelder–Mead simplex search

method is used as the principal algorithm for unconstrained

minimization (Lagarias et al. 1998). Before starting to

estimate unknown parameters g = (e, ss, sf, s0), the

parameters of the linear filter in Eq. 7 are estimated using

the MEG data and the estimated N(t) is considered as the

overall synaptic activity (�uðtÞ in Eq. 4) as shown in Fig. 7.

The iterative optimization process is started by choosing

proper initial values for the unknown parameters. The

parameters are updated by minimizing the sum square error

between the given BOLD signal and the estimated BOLD

signal using the values of the parameters in the previous

step. We implement the Nelder–Mead simplex search

method by the ‘‘fminsearch’’ function in Matlab. ‘‘Simu-

link’’ is used to solve the nonlinear state-space Eq. 4 by the

iterations of the ‘‘fminsearch’’ minimization.

The estimated parameters of the EBM for all subjects

are given in Table 3. For each subject, the value of the

parameter in this table is the mean of the estimated

parameter in all active voxels. The histograms of 4 esti-

mated parameters of the EBM for all subjects are illustrated

in Fig. 8. We use principal component analysis (PCA) to

extract the main component of the BOLD signal from all

active voxels in each subject. Then, we estimate parameters

of the EBM for this component. The estimated and the real

BOLD signals for this PCA component of all subjects are

shown in Fig. 9.

For reducing the redundancy of the parameters of the

EBM, we consider fixed values for three parameters (a, E0,

and V0) and estimate the remaining four parameters (e, ss,

sf, s0). Considering the fixed values (a = 0.33, E0 = 0.34,

and V0 = 0.03), the optimization procedure shown in Fig. 7

is successfully executed for all subjects except Subject #6.

This subject has strongest BOLD signal compared to others

as shown in Fig. 9. According to the linear relationship

between the BOLD signal and V0 in (4), a larger value for V0

is expected for this subject compared to others. When

V0 = 0.03 is fixed for this subject, the optimization proce-

dure becomes unstable and the value of e tends to be very

large to compensate the assumed small value of V0. Stable

optimization needs larger values for V0. A stable optimi-

zation for this subject is obtained by considering V0 = 0.06.

However, value of e is still large for this subject as shown in

Table 3. Subject #7 also has high BOLD contrast and its

estimated e has a large value. Large variation of e shown in

Fig. 8 is related to the fact that we assign a fixed value to V0

and compensate its possible variation by e.
The BOLD contrast of some subjects has low SNR as

shown in Fig. 9 and Table 3. There are outliers in their real

Table 3 Estimated values of the parameters of the proposed integrated model using real auditory data of 7 normal subjects

Subject # Parameters of the linear filter in (7) Parameters related to the extended balloon model in fMRI

K Tp (ms) Td (ms) SNRM Number of

active voxels

r (mm) e ss (S) sf (S) s0 (S) SNRf

1 0.016 20 74 0.87 40 10.06 0.21 (0.14) 2.30 (0.67) 1.84 (0.73) 1.49 (0.50) 4.16

2 0.020 100 0 0.98 10 5.55 0.17 (0.13) 2.04 (1.91) 2.75 (0.75) 1.44 (0.43) 1.81

3 0.025 14 1 3.20 21 10.67 0.13 (0.12) 1.05 (0.83) 3.93 (1.78) 2.30 (1.10) 3.25

4 0.019 44 59 1.23 42 7.87 0.17 (0.15) 1.40 (1.11) 3.65 (1.53) 2.70 (1.20) 3.15

28 10.11 0.16 (0.14) 1.40 (0.63) 4.23 (1.82) 2.30 (0.85) 3.54

5 0.020 31 72 1.40 82 8.01 0.17 (0.17) 1.93 (1.36) 3.44 (1.64) 2.82 (1.08) 3.03

67 11.29 0.16 (0.14) 1.75 (0.89) 3.77 (1.65) 2.85 (0.96) 2.50

6 0.017 3 0 1.08 56 11.51 0.34 (0.32) 1.35 (0.51) 2.27 (0.88) 1.63 (0.64) 9.39

7 0.012 20 39 0.63 44 16.86 0.26 (0.17) 2.16 (0.88) 3.26 (1.16) 1.68 (0.79) 6.51

Mean 0.018 33 35 - - 10.21 0.20 1.74 3.23 2.27 -

STDV 0.004 32 34 3.15 0.19 1.04 1.58 1.07

The parameter Tp, Td, and K are related to the linear filter in Eq. 7. Values under columns e, ss, sf, and s0 are the mean value and the standard

deviation (values in parentheses) of these estimated parameters from all active voxels of the corresponding subjects. Mean and STDV rows show

the average and the standard deviation of the estimated parameters for all subjects, respectively. a = 0.33, E0 = 0.34, and V0 = 0.03 (V0 = 0.06

for subject #6) were fixed at their physiological mean values. MEG linear filter signal to noise ratio (SNRM) is defined as SNRM ¼
N̂ðtÞ
�� ��= N̂ðtÞ � NðtÞ

�� �� where N̂ðtÞ is the estimate of N(t) according to (7). fMRI Signal to noise ratio (SNRf) is defined as SNRf ¼
ŷðtÞk k= ŷðtÞ � yðtÞk k where ŷðtÞ and y(t) are estimated and real BOLD signals, respectively
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fMRI data. As ‘‘fminsearch’’ may find any minimum of Eq.

11, outliers can cause finding a local minimum instead of

the global minimum. However, using l1 norm instead of l2

norm in (11) can reduce the effect of outliers. Thus, we

repeat the estimation of the parameters using l1 norm.

However, mean values of the estimated parameters of the

active voxels do not change significantly compared to the

results from l2 norm given in Table 3. The Nelder–Mead

simplex search optimization method (Lagarias et al. 1998)

is used for the implementation of the optimization using

both l1 and l2 norms.

The estimated values of the parameters of the EBM

shown in Table 3 are in agreement with other works

(Deneux and Faugeras 2006; Friston et al. 2000). Reason-

able mean and STDV of the estimation are due to the fact

that all datasets are from the normal subjects with the same

stimulus. In addition, we have two series of fMRI datasets

for subjects #4 and #5 whose estimated parameters are

similar as shown in Table 3. High inter-subject variability

of the MEG parameters (Tp and Td) in Table 3 is related to

low SNR of the MEG signal. Although these parameters are

further used to calculate the input of the EBM for estimating

its parameters, delays in the order of 10 ms in the input of

the EBM cause very little change in output due to the slow

behavior of the EBM. Finally, Figs. 6 and 9 illustrate

goodness of fit of the real MEG and fMRI datasets to the

proposed integrated MEG/fMRI model.

As the final stage, we estimate the parameter related to

the spatial crosstalk in fMRI. Figure 3 illustrates the

detected activation from the fMRI time series of subject #2

after removing the single active voxels. For estimating the

spatial crosstalk represented by r = (rx, ry, rz) in Eq. 2 in

(Babajani et al. 2005), two Gaussian kernels are fitted to

the main clusters of the detected activation areas in left and

right primary auditory cortices. We assume an isotropic

Gaussian kernel with rx = ry = rz for estimating rx, ry,

and rz. The hotspot of the cluster is assumed as the center

of the Gaussian kernel. All neighboring voxels to the

central voxel in a sphere with a diameter of 25 mm are

considered for curve fitting. The estimated r is given in

Table 3.

In this study, we propose a method to estimate the

parameters of the integrated MEG/fMRI model using real

auditory stimulus. However, the proposed estimation

Fig. 7 Illustration of the optimization procedure for estimating the

parameters of the EBM using the BOLD signal. The parameters of the

linear filter in Eq. 7 are estimated using MEG data and the output N(t)
is given as �uðtÞ in Eq. 4. The Nelder–Mead simplex search

optimization method is implemented using the ‘‘fminsearch’’ function

in Matlab (Lagarias et al. 1998). The ‘‘fminsearch’’ function mini-

mizes the sum square error between the real and estimated BOLD

signals by iteratively changing the parameters of the EBM. ‘‘Simu-
link’’ is used to solve the nonlinear state-space Eq. 4

Fig. 8 Histograms of the estimated parameters (e, ss, sf, s0) of the

EBM for all subjects. a = 0.33, E0 = 0.34, and V0 = 0.03 (V0 = 0.06

for subject #6) were fixed at their physiological mean values. Left and

right values in parentheses of each subplot show the mean and the

standard deviation of the estimated parameters, respectively
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procedure can be used for other types of stimulus. The

parameters of the model have different levels of depen-

dency on the stimulus. Parameter KM as the spatial pattern

of activation has strong dependency on the type of stimu-

lus. For example, we expect different spatial responses

(different KM) for a visual stimulus compared to an audi-

tory stimulus. Parameters of the linear filter (7) have

variations that, depending on the strength and type of the

stimulus. K in (7), may change over a wide range due to the

variation of the strength of the stimulus. But, Tp, the time

delay between the stimulus onset and the maximum MEG

activation, may exhibit less variation for different stimulus

types. Although hemodynamic parameters (e, ss, sf, s0, a,

E0, V0) may change for different stimulus types and

strengths, their variations are limited based on the physi-

ology (Friston et al. 2000).

The proposed model with the parameters estimated from

the real data can be used in simulating realistic datasets for

comparing different integrated EEG/MEG and fMRI

analysis methods. After estimating parameters of the model

using real EEG/MEG and fMRI datasets for a particular

stimulus, generating EEG/MEG and fMRI signals for this

stimulus is straightforward. The estimated KM (as the

spatial pattern of the MEG activation), N(t), and G will be

used to generate the simulated EEG or MEG signals based

on Eq. 2. N(t) as the number of active PSPs at time point t

will be calculated using Eq. 7 and the given stimulus

profile. Solution of the forward problem will generate the

lead field matrix G. To generate the simulated BOLD

signal, Eq. 4 will be used with the calculated N(t) and the

estimated parameters of the EBM (e,ss, sf, s0, a, E0, V0).

Different values of SNR for both EEG/MEG and fMRI

Fig. 9 Illustration of the real and the estimated BOLD signals. Red

plots show the PCA main component extracted from the real data of

all active voxels in each subject. This PCA component is the average

of all blocks; o-plot and error-bar show the mean and the STDV of

BOLD signals, respectively. The estimated BOLD signals are

illustrated by blue lines. 2 series of fMRI data for subjects #4 and

#5 were used as specified by subscripts 1 and 2 in title of the

corresponding subplots
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signals can be generated by adding the additive noise in

neuronal level (N(t)) as well as in the measurements as

shown in Fig. 1.

Discussion

The relationship between strength of stimulus and the

generated neural activity in the cortical areas should be

generally nonlinear. This nonlinearity minimally stems

from the physiological principle that the strength of stim-

ulus can be theoretically unlimited but the number of

neurons and their synapses are limited. However, this

relationship within a certain range of change in stimulus

strength has been reported to be linear (Arthurs et al.

2007). In addition, this nonlinear relationship can be

locally approximated by a linear relationship using the

Taylor series expansion when the strength of the stimulus

changes within a small range.

PSPs and action potentials (APs) are two indices of

neural activity. Although MEG and EEG signals seem to be

largely due to the synaptic current flow (Baillet et al. 2001;

Hämäläinen et al. 1993), currents related to APs may

contribute to the MEG and EEG signals (Curio et al. 1994;

Hashimoto et al. 1996). In (Babajani et al. 2005), we

assumed that the PSPs are the main source of the neural

activity and generate the MEG and EEG signals. After the

stimulus onset, the number of fired PSPs and consequently

the number of active neurons in the active cortical areas

will gradually increase. In an active area, we model the

mean number of the fired PSPs by a simple first order linear

filter according to Eq. 7. N(t) in Eqs. 1 and 7 represents the

mean number of the fired PSPs at time point t in the desired

active area.

To model N(t) in a large range of stimulus strength, a

nonlinear model should be used. However, we use a special

case (fixed strength of an auditory stimulus) in this study

where a linear model can be extracted. As indicated in

section of ‘‘Parameter Estimation,’’ we have tried to

improve the approximation of the dynamics of the linear

filter using higher order linear filters, although it did not

generate much improvement in the results. For a stimulus

that involves multiple cortical areas with interactions

between the areas, we expect more complex dynamics. In

this study, we use the simple auditory stimulus, which

involves limited areas (mostly the primary auditory corti-

ces) and thus the simple first order filter seems to be

sufficient to characterize the dynamics of the model.

Referring to Eqs. 8–13 in (Babajani et al. 2005), the sum

of the PSPs’ activities generates a current dipole whose

projected amplitude on the direction perpendicular to the

cortical surface is:

QðtÞ ¼
Z
s

XNðt�sÞ

k¼1

wkbkDVkukðsÞ cosðhkÞ
 !

:ds ð12Þ

where subscript k shows the kth fired synapse, N(t) is the

number of fired PSPs at time point t, value of wk is +1 for

excitatory PSP (EPSP) and -1 for inhibitory PSP (IPSP),

DVk shows the peak value of the kth PSP, bk models

parameters of the kth synapse and its neighboring

dendrites, uk (t) is normalized waveform of the kth PSP,

and cos(hk) shows projection of amplitude of the kth

current dipole on the direction perpendicular to the cortical

surface. The following normalized waveform uk (t) was

proposed in (Babajani et al. 2005) and is based on previous

studies (Almeida and Stetter 2002; Larkum et al. 1998):

ukðtÞ ¼
te
�ðt�sk Þ

sk

sk
ð13Þ

where sk is the time constant of uk (t).
We introduced appropriate probability distribution

functions (pdfs) for the random variables wk, DVk, bk, hk,

and sk (Babajani et al. 2005). Considering the mean values

of these variables, the mean value of Q(t) in Eq. 12 can be

calculated as follows (see Section III in (Babajani et al.

2005) for more explanations):

QðtÞ ¼ �V �b 1� rðtÞð Þ � gðrE
TÞ � rðtÞ gðrI

TÞ
� �

�
Z
s

uðsÞ
XNðt�sÞ

k¼1

ds ð14Þ

where uð�Þ is the mean of uk (t), V is the mean of DVk, b is

the mean of bk, r(t) is the ratio of the number of active

IPSPs to the number of all active PSPs, and gðrE
TÞ and

gðrI
TÞ are related to the spatial distributions of the EPSPs

and IPSPs, respectively. Although r(t) may change after

stimulus onset, its variation is small in the current study

because we use a specific type and fixed strength of an

auditory stimulus and thus r(t) can be approximated by a

time-invariant coefficient r. Considering the effects of all

time-invariant coefficients of Eq. 14 in K, Eq. 14 can be

written as:

QðtÞ ¼ K �
Z
s

uðsÞ � Nðt � sÞds ¼ K � uðtÞ � NðtÞ ð15Þ

where ‘‘*’’ is the convolution operator. Considering the

step response in Eq. 7, the Laplace transform of Eq. 15 is as

follows:

QðSÞ / UðSÞ � NðSÞ / 1

ðSþ 1
sÞ

2

 !
� e�Td �S

SðSþ 1
TP
Þ

� �
ð16Þ

where UðSÞ and N(S) are Laplace transforms of uðtÞ and

N(t), respectively; s is the mean of sk based on Eq. 13
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whose value is 2.8 ms referring to its pdf in (Babajani et al.

2005), and Tp and Td are the parameters of the linear filter

in Eq. 7. Referring to Table 3, the mean value of the

estimated Tp is 33 ms. Poles of N(S) are zero and

-1/TP = -30.3 Hz. Pole of UðSÞ is -1/s = -357.1 Hz.

The dominant poles of QðSÞ are poles of N(S), and thus we

can neglect the effect of UðSÞ on QðSÞ. Therefore, we can

conclude that QðSÞ / NðSÞ or QðtÞ / NðtÞ; we use this

fact in Eq. 1.

The relationship between the stimulus and the generated

BOLD signal can be separated into three steps: a step from

the stimulus to the neural activity, another step from the

neural activity to the CBF and a final step from the CBF to

the BOLD signal. The step from the CBF to the BOLD

signal was described by the proposed nonlinear Balloon

model (Buxton et al. 1998). For the step from the neural

activity to the CBF, Friston et al. proposed a model of CBF

autoregulation and added this relationship to the model of

Buxton et al. in the extended Balloon model (Friston et al.

2000). They used the waveform of the stimulus as the

neural activity while the relationship between the stimulus

and the neural activity should be nonlinear as reported in

some experimental studies (Jones et al. 2004; Nielsen and

Lauritzen 2001).

As mentioned before, the linear relationship between the

stimulus and the neural activity is an acceptable approxi-

mation in the case of this study where we used stimulus of

fixed strength. To derive the neural activity as the input of

the EBM, we assumed that the neural activity is propor-

tional to the synaptic activity (Babajani et al. 2005), which

was defined as the total consumed energies by the PSPs. In

addition, we considered the same rule for both EPSPs and

IPSPs to calculate the synaptic activity. This assumption

was based on experimental studies (Caesar et al. 2003).

Finally, we concluded that the synaptic activity was line-

arly related to N(t) (see Eqs. 5–7 and 19 in Babajani et al.

2005). Out first assumption about the proportionality of the

neural activity to the consumed energy of the PSPs seems

to be acceptable as indicated in other studies (Attwell and

Iadecola 2002; Sotero and Trujillo-Barreto 2008).

Conclusion

In this paper, we estimate the parameters of the integrated

MEG/fMRI model (Fig. 1) proposed in our previous work

(Babajani et al. 2005) using real data. In this model, the

external stimulus generates neural activities related to the

PSPs which are the common link between MEG and fMRI.

We use a first order linear filter to calculate the number of

active PSPs as a function of the external stimulus. We

summarize the relationship between the number of active

PSPs as an index of neural activity that generates the MEG

signal. Moreover, we define the relationship between the

number of active PSPs and the overall synaptic activity as

input of the EBM for generating the fMRI signal. We

estimate parameters of the proposed integrated model using

real auditory data from 7 normal subjects. We start with an

ICA analysis of the MEG signal and show that the main

ICA component can be assumed as the number of active

PSPs. Parameters of the first order linear filter and

parameters of the EBM are estimated using the real data.

The proposed model with the parameters estimated from

the real data can be used in simulating realistic datasets for

comparing different integrated EEG/MEG and fMRI

analysis methods.
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