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Integrated MEG/EEG and fMRI Model
Based on Neural Masses

Abbas Babajani and Hamid Soltanian-Zadeh*, Senior Member, IEEE

Abstract—We introduce a bottom-up model for integrating elec-
troencephalography (EEG) or magnetoencephalography (MEG)
with functional magnetic resonance imaging (fMRI). An extended
neural mass model is proposed based on the physiological prin-
ciples of cortical minicolumns and their connections. The fMRI
signal is extracted from the proposed neural mass model by intro-
ducing a relationship between the stimulus and the neural activity
and using the resultant neural activity as input of the extended
Balloon model. The proposed model, validated using simulations,
is instrumental in evaluating the upcoming combined methods for
simultaneous analysis of MEG/EEG and fMRI.

Index Terms—EEG, fMRI, integrated model, MEG, neural
mass.

I. INTRODUCTION

I N THE LAST few years, numerous efforts have been di-
rected at multimodal data fusion. Electroencephalography

(EEG), magnetoencephalography (MEG), and functional mag-
netic resonance imaging (fMRI) are innovative functional brain
imaging techniques. The spatiotemporal resolution of these
techniques is different. EEG and MEG have good temporal
resolutions in the order of millisecond, but their spatial resolu-
tions are poor due to ill-posedness of the inverse solution. On
the other hand, fMRI has good spatial resolution in the order
of millimeter but poor temporal resolution due to the limited
rate of change in the hemodynamic response. Since MEG/EEG
and fMRI are different views of a common source (neural
activity), their integrate analysis should improve the overall
spatiotemporal resolution. Several sophisticated methods have
been introduced for MEG/EEG and fMRI combined analysis
[1]–[4] in order to extract as much information as possible using
a data-driven strategy (the authors refer to them as top-down
methods).

Although integrated MEG/EEG and fMRI model (bottom-up
modeling) is an active area of research, there is limited work
about it in the literature [5]. The integrated model proposed
by Riera et al. [6], [7] is one of the most recent works in
this field. They introduce a two-dimensional autoregressive
model with exogenous variables to describe the relationships
between synaptic activity and hemodynamics. They use a static
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nonlinear function to describe the electro-vascular coupling
through a flow-inducing signal. In this work, a linear filter for
step from the stimulus to the synaptic activities is used, while
experimental results report a nonlinear relationship between
them [8], [9]. Moreover, their assumption about linear rela-
tionship between cerebral blood flow (CBF) and blood oxygen
level dependent (BOLD) is not generally valid [10].

We propose an integrated model in this paper which is totally
different from the integrated model in [7] and does not have the
above limitations. The proposed integrated bottom-up model is
based on the neural mass model. The neural mass models com-
prise macro-columns, or even cortical areas, using a few state
variables to represent the mean activity of the whole neuronal
population. There are several views and methods in neural mass
modeling [11]–[17]. We use the Jansen’s model [14] as the base
of the proposed model. However, the Jansen’s model has few
parameters and does not have the flexibility to generate various
event-related potentials (ERP). As the first contribution of this
paper, we extend the Jansen’s model and propose an extended
neural mass model in a cortical area. The extended neural mass
model is based on the physiological principles of cortical mini-
columns and their connections. We illustrate that the model is
capable to produce various ERP. In another work, David et al.
in [12] extend the Jansen’s model in multiple cortical areas with
introducing Bottom-up, Top-down and Lateral connections be-
tween them. They use the Jansen’s model in each area. We also
extend their work using a new model of an area, based on a phys-
iological modeling of the minicolumns with an extended neural
mass model.

We use the extended Balloon model (EBM) in the fMRI part
of the proposed integrated model. The Balloon model was pro-
posed by Buxton et al. [10]. In this model, a model of oxygen
exchange is linked to the venous dilation processes due to CBF
variations, and the BOLD signal is derived from the total de-
oxyhemoglobin content within a voxel. In the EBM proposed by
Friston et al. [18], the Balloon model [10] is used for relating the
CBF to the BOLD and a model of CBF autoregulation is added
to the Balloon model which is linear and relates the synaptic
activity to the CBF. The step from the stimulus to the synaptic
activity is not proposed in the EBM which is reported nonlinear
in experimental results [7], [8]. We propose a nonlinear model
for this step which is in agreement with the experimental results.

The second and main contribution of this paper is a new in-
tegrated MEG/EEG and fMRI model based on the neural mass
model. Thanks to our extension of the neural mass model, the
neural mass model that has so far been used for the MEG/EEG
modeling only, has been used here for the first time for the fMRI
modeling. The originality of our approach is to suggest a non-
linear relationship between the stimuli and the neural activity
using our extended neural mass model. Thus, with the combi-
nation of this new neural activity model and the EBM, we obtain
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an fMRI model that is naturally integrated with an MEG/EEG
model. We justify our model of the neural activity by comparing
the simulation results with other experimental data. Although
we emphasize EEG in the rest of the paper, without loss of gen-
erality, the EEG and the ERP can be replaced by the MEG and
event-related field (ERF), respectively.

The organization of the paper is as follows. In Section II,
the extended neural mass model is presented and then the EEG
and the fMRI signals are derived from this model. Section III
is dedicated to the analysis of the proposed model by reporting
a variety of simulation results. The conclusion is given in
Section IV.

II. PROPOSED INTEGRATED MODEL

A. Neural Mass Model

1) Jansen’s Model: The neural mass model proposed by
Jansen and Rit [14] is based on a previous lumped parameter
model [15]. A cortical column is modeled by a population of
excitatory pyramidal cells, receiving inhibitory feedback from
the local interneurons and excitatory input from the stellate
cells. The solid box in Fig. 1 shows the Jansen’s model with
some changes in its arrangement and notations. Each of the
neuron populations is modeled by two blocks. The first block
transforms the average pulse density of presynaptic input
coming to the population of neurons into an average postsy-
naptic membrane potential (PSP) which can be either excitatory
or inhibitory. This block represents a linear transformation with
an impulse response. The impulse responses of the excitatory
and the inhibitory synapses, shown by “he” and “hi” in Fig. 1,
are in the form of

(1)

where and determine the maximum amplitude of the ex-
citatory and inhibitory PSP, respectively. The parameters and

are the lumped representation of the sum of time constants of
the passive membrane and other spatially distributed delays in
the dendritic tree. The values of , ,

, and are physiologically plausible and
produce oscillating output in the model [14].

The second block, represented by “ ” operator in Fig. 1,
transforms the average membrane potential of the population
into an average rate of APs fired by the neurons. This instanta-
neous transformation is described by the sigmoid function. In
this paper, we use the following sigmoid function proposed by
David et al. [12] according to zero resting state for all variables
in ERP

(2)

where and are the parameters that determine the shape of
the sigmoid function. The nonlinear relationship between the
stimulus and the neural activity in our model stems from the
nonlinear behavior of the sigmoid function. The four constants

control the strength of the intrinsic connections and repre-
sent the total number of synapses in each subpopulation. Using
anatomical information from the literature, as described in [14],
the relative values of these constants are fixed: ,

Fig. 1. An illustration of the proposed extended neural mass model for the
ith minicolumn. The solid box shows the classical Jansen’s model. The left
dash-dot box illustrates contributions of the neighboring minicolumns to the
ith minicolumn. The MEG/EEG signal is related to y . h and h are impulse
responses of the excitatory and the inhibitory synapses according to (1). S(:) is
the sigmoid function. x shows overall PSP of different cell populations. The
four constants  represent the total number of synapses in each subpopulation.
G , G , and G represent the influence of the neighboring minicolumns on
the stellate cells, pyramidal cells and interneurons, respectively. a , b , and
c represent the strength of the connections of different cell populations be-
tween the ith and the jth minicolumns. � is the propagation delay between
minicolumns i and j . e represents strength of the afferent input to the ith mini-
column. � is the propagation delay between external stimulus (Stim(:)) and
cortical columns. �(t) is physiological noise.

. , , , and in Fig. 1
show overall PSP of different cells. and show overall
PSPs of the stellate cells and interneurons, respectively.
and show the excitatory and inhibitory overall PSPs of the
pyramidal cells, respectively. The MEG/EEG signal is modeled
by the PSP of the pyramidal cells as .

2) Proposed Extended Neural Mass Model: The minicolumn
is the basic unit of the mature neocortex which is a narrow chain
of neurons extending vertically across the cellular layers II-VI.
Each minicolumn in primates contains roughly 80–100 neurons
[19]. The width of each minicolumn is 50 and the mean
value for intercolumnar distance is 80 [20]. There are three
basic cell types in minicolumns: the stellate cells, the local in-
hibitory interneurons and the pyramidal cells; the axon of the
two former ones spread vertically in their minicolumn without
any considerable outputs to the neighboring minicolumns. The
output of a minicolumn is mainly derived from its pyramidal
cells and so all cell types in a minicolumn receive input from
pyramidal cells of the neighboring minicolumns. The stellate
cells also receive afferent thalamic input [20].

The thalamo-cortical connections have been the focus of sev-
eral modeling studies [21], [22], but the thalamic nuclei are
not included in the Jansen’s model. We add the thalamo-cor-
tical feed forward connection to the Jansen’s model as shown
in Fig. 1. The thalamus is part of thalamo-cortical loops, which
means that it sends and receives information to and from the
cortex. The feedback from the cortex to thalamus is particularly
important in spontaneous activity and it is tightly linked to the
frequency of EEG oscillations. In the event-related activity, the
feedback from the cortex to the thalamus is much weaker than
the feedforward connection between the thalamus and the cortex
[22]. For this reason, and for simplicity, we do not include the
feedback in the proposed model. However, it can be included
for applications in which the role of this feedback is important.
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The interaction between different neurons in a minicolumn
can be explained by the Jansen’s model. According to the
hierarchical structure of the cell assemblies, we extend the
Jansen model to a cortical area which contains several mini-
columns. The proposed extended neural mass model is based
on physiological principles explained in the previous paragraph
and shown in Fig. 1. As proposed in [12], the model can be
further extended by considering connections between multiple
areas. For the sake of clarify, in the sequel we do not consider
the interarea connections and focus on a single area to present
our extended model.

Fig. 1 shows different parts of the proposed extended neural
mass model in th minicolumn. Solid box in Fig. 1 represents
three population cell types (stellate cell, pyramidal cell, and in-
hibitory interneuron), which model the neural activation of each
minicolumn in the proposed model. Stellate cell receives an
input from pyramidal cell in the same minicolumn, inputs from
pyramidal cells in neighboring minicolumns, afferent thalamic
input and physiological noise. The physiological noise, repre-
sented by in Fig. 1, models all inputs to the minicolumn that
do not have correlations with the external stimulus and can be
considered as white Gaussian noise. Stellate cells receive input
from the external stimulus through the thalamic relay nuclei,
which is shown with dotted block at the top of Fig. 1. The pa-
rameter shows the stimulus gain, which affects the th mini-
column and it will be modeled with a Gaussian kernel. is
the propagation delay between the external stimulus and the th
minicolumn.

The synapses of the stellate cell receive pulses, which are
generated by pyramidal cell in the same minicolumn through the
gain parameter . represents the relative number of synapses
of the stellate cell subpopulation. Overall synaptic activities of
the stellate cells in the th minicolumn are represented by .
The effect of neighboring minicolumn on the th minicolumn is
shown with the dash-dot block in the left side of Fig. 1. and

show strength and delay of the input to the stellate cell in the
th minicolumn from the pyramidal call in the th minicolumn

( ), respectively. is the sigmoid operator according
to (2). is a global gain that represents the overall effects of
the neighboring minicolumns on the input of the stellate cell in
each minicolumn.

Pyramidal cell in Fig. 1 has two parts that model the excita-
tory and inhibitory synapse populations in this cell. Inhibitory
synapses of the pyramidal cell receive input from inhibitory in-
terneurons of the same minicolumn. Excitatory synapses receive
input from the stellate cells of the same minicolumn and inputs
from the pyramidal cells of the neighboring minicolumns.
and represent the relative number of excitatory and inhibitory
synapses of the pyramidal cell, respectively. Overall excitatory
and inhibitory synaptic activities of the pyramidal cells in the
th minicolumn are represented by and , respectively.

shows strength of the input to the excitatory synapses of the
pyramidal cells in the th minicolumn from the pyramidal cells
in the th minicolumn. represents the gain of the overall ef-
fects of the neighboring minicolumns on the input of the ex-
citatory synapses of the pyramidal cells in each minicolumn.

shows the overall synaptic activities of the pyramidal cells
and generate the MEG and EEG signals. In the proposed model,

is the AP generated by the pyramidal cells and is the
output of the th minicolumn to other minicolumns.

The inhibitory interneuron in Fig. 1 receives an input from the
pyramidal cells of same minicolumn and other inputs from the
pyramidal cells of the neighboring minicolumns. and are
the relative number of the interneuron synapses and the overall
interneurons synaptic activities in the th minicolumn, respec-
tively. shows strength of the input to the interneuron in the
th minicolumn from the pyramidal cells in the th minicolumn.

represents gain of the overall effects of the neighboring mini-
columns on the input of the interneuron in each minicolumn.

The overall synaptic activities of different cell populations in
the th minicolumn, , can be obtained from a convolution
of the first-order kernel in (1) with the sum of all inputs as
by

(3)

where is the convolution operator. According to the special
shape of in (1), the differential equation form of (3) is ob-
tained by the following equation:

(4)

In the extended neural mass model, we consider a lattice form
containing minicolumns for the desired cortical area. The
intercolumnar distance between minicolumns is . The max-
imum permissible size of this lattice is limited by the available
computational power only. Considering (4) for each in
Fig. 1, the activity of the th minicolumn in the extended neural
mass model is described by

(5)
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where is convolution, , ,
, , , , ,

, and as given in [12].
is the propagation delay between minicolumn and minicolumn

where is the unit delay between two adjacent minicolumns.
It is selected as 0.1 ms in our simulations, based on the phys-
iological data. is the Euclidean distance between the
two minicolumns. is the propagation delay between external
stimulus ( ) and the cortical columns. It is in the order of
40 ms as stated in [21]. is physiological noise.

, , and represent the influence of the neighboring
minicolumns on the stellate cells, pyramidal cells and interneu-
rons in a minicolumn. Due to similar structure of the mini-
columns in an area, we assume that the , and are
fixed for all of the minicolumns in an area. , and
represent the strength of the connections of different cell pop-
ulations between the th and the th minicolumns. We use a
Gaussian kernel for modeling the connections between mini-
columns based on the physiological principle that the greater
the distance between the two minicolumns, the weaker their in-
fluence on each other

(6)
where as deduced from the
data in [19]. in (5) represents the strength of the afferent input
to the th minicolumn

(7)

where is index of the minicolumn in the center of the area
and as deduced from data in [19].

B. EEG and BOLD Signals in Proposed Integrated Model

The EEG is related to the in (5) that shows the synaptic
activations of the pyramidal cells. If we consider a vector along
the vertical direction of the th minicolumn whose absolute
value is , the sum of the vectors in all minicolumns of an
area constructs the equivalent current dipole (ECD) of the area.
Since minicolumns are small compared to their distances to
the EEG sensors and also the apical dendrites of the pyramidal
cells are almost parallel, we assume that the minicolumns in an
area are almost parallel. Thus, the algebraic sum of all
is enough for calculating the ECD in the area. The complete
determination of the relationship between the ECD and the
EEG requires the solution of the forward problem [23]. For
simplicity in the simulations, we consider a homogenous head
model and neglect the effect of the volume current, thus the
sum of is considered as the ERP or the EEG signal. It
should be noted that finding the electric activation in a voxel
from scalp potential by solving an inverse procedure is not the
focus of this paper. In addition, note that it may be simplistic to
state that an ECD is representative of an ERP or ERF and the
neural activity presented by ECD is not necessarily coincident
with the one that could be inferred from scalp data. However,
this simplification does not affect the consistency of the model
that relates the BOLD effect to the neural activity.

In the following, we introduce a relationship between the ex-
ternal stimulus and the BOLD signal in a single minicolumn.

Then, using our extended neural mass model, we extend the idea
to an area containing several minicolumns. The relationship be-
tween the stimulus and BOLD can be segregated into three sep-
arate steps: a step from the stimulus to the neural activity, an-
other step from the neural activity to the CBF and a final step
from the CBF to the BOLD. For the step from the CBF to the
BOLD, Buxton et al. [10] have proposed the nonlinear Balloon
model. For the step from the neural activity to the CBF, Friston
et al. [18] have proposed a model of CBF autoregulation and
added this relation to the model of Buxton in the EBM.

The relationship between the neural activity and CBF is as-
sumed to be linear in EBM. However, it should be nonlinear, at
least through a ceiling effect on CBF change [7], [24]. In our
approach, we assume that the entire nonlinearity between the
stimulus and CBF can be modeled by a nonlinear transforma-
tion from the stimulus to the neural activity as done in [24]. We
use the EBM for relating the neural activity to the BOLD and in-
troduce a new relationship between the stimulus and the neural
activity.

In the neural mass model, ERP is only related to the synaptic
activity of the pyramidal cells, but the neural activity as an index
for increasing the CBF could be related to the activity of all
cell types. The PSPs and action potentials (APs) are two main
indices for showing the activity in a neuron. It is assumed that
increasing the CBF is only related to the PSPs and there is no
significant correlation between CBF and APs [25], [26]. Thus,
neural activity should be related to the , , , and

in Fig. 1 which illustrate the overall synaptic activities of
different neurons.

Considering the neural mass model for a single minicolumn,
each represents the activation of several synapses fired
with different time lag

(8)

where is the same as that in (1). Based on the physiolog-
ical principle that the neural activity and CBF are proportional
to the consumed energy by the PSPs [26], [27], we propose
the following representation for the neural activity in a
minicolumn:

(9)

where is the current due to voltage and the product
of by , according to the well-known circuit theory,
shows the instantaneous power of the corresponding PSP. The

is generally a complex nonlinear function due to Hodgkin-
Huxley equations. For simplicity, we consider a constant value
for the synaptic current

(10)

The total neural activity of the neurons considering (8) and (10)
is, therefore

(11)
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Since is some representation of the power consumed
in an area, it is expected to have a positive value, as it is the
case in [7] and [24]. In ERP regime of the Jansen’s model, all

are positive when the sigmoid function is positive. Since
the sigmoid function in (2) is designed to produce a zero resting
state for all variables, its value may become negative. Thus, we
consider the absolute value of in our model to comply with
the positivity of

(12)

We believe that both of the excitatory and inhibitory post-
synaptic activities induce comparable increases in the neural
activity and CBF. Hence, there are no differences between the
inhibitory and excitatory PSPs in our model as illustrate in (12).
This assumption is also used in a recent paper [7].

The neural activity in an area with minicolumns is the sum
of all neural activities in each minicolumn

(13)

where for are the overall synaptic activ-
ities of the th minicolumn in the proposed extended neural
mass model and can be calculated from (5). It should be noted
that (13) can model event-related decrease of the BOLD signal,
when it is used as the input of the EBM. This is due to the fact
that the dynamics of the EBM can generate event-related de-
crease of the BOLD signal even with a positive input. As men-
tioned above, the extended neural mass model has the advantage
of allowing a more accurate estimation of the EEG. There is a
second advantage of the extended neural mass model in fMRI
model. The summation in (13) is the image of a physiological
principle: the energy consumed in a cortical area is the sum of
the energies consumed by its minicolumns. Therefore, there is
no approximation in this part of our computation for the neural
activities. This is an advantage of considering numerous mini-
columns in a cortical area instead of the simple Jansen model
for the whole cortical area.

The neural activity computed in (13) is used as the input of the
EBM from which the output BOLD signal is obtained. Instead
of the proportionality (13), we consider its equality form, con-
sidering the proportional gain in the “neuronal efficacy ” in the
EBM. In the simulations, the constant parameters of the EBM
are the same as those in [18]. The proposed integrated model in
a cortical area contains the three sets of parameters as follows.

1 ) Parameters of the Jansen’s model: the , , , , , ,
and are related to the Jansen’s model, and because of the
similarity of the minicolumns in an area, can be assumed
fixed for all minicolumns in the area. We can reduce the
redundancy by assuming , , and

based on the anatomical data [14].
2 ) Parameters of the extended neural mass model: they are

, , , , , , , , and .
3 ) Parameters of the EBM according to the EBM in [18].

We are currently working on the estimation of these parameters
using simultaneously acquired EEG and fMRI datasets. The re-
sults will be presented in the forthcoming paper.

Fig. 2. Illustration of the capability of the proposed extended neural mass
model for producing the ERPs. The stimulus is the Dirac delta function. The
default value of the parameters in (5) are: H = 3:25 mV, H = 29:3 mV,
� = 10 ms, � = 15 ms,  = 50,  = 40,  =  = 12, e = 2:5,
r = 560, � = 0:1 ms, � = 40 ms, � = � = � = 2 D = 160 �m,
and � = 5 D = 400 �m. In each subplot, all parameters are selected as
the default values except for the parameters whose values are mentioned at the
top of each subplot. Top row: effect of the external stimulus strength on ERP;
� = 0 in this simulation. Second row: effect of the stellate cells gain (G )
on ERP. Third row: effect of the pyramidal cells gain (G ) on ERP. Bottom
row: effect of the inhibitory interneurons gain (G ) on ERP.

III. SIMULATION RESULTS

In this section, we illustrate simulation results of the extended
neural mass model in a cortical area. The area contains

minicolumns where intercolumnar distance is
. Minicolumns uniformly spread in a square area of

. The Simulink toolbox of the MATLAB is used for
solving (5) after converting it to a matrix state space form with

state variables. The solver type is “Fixed-step”
with solver “Ode4 (Runge-Kutta)” and sample time is set as
0.1 ms. With this choice, due to the MATLAB approaches, the
minimum possible propagation delay for solving the equations
with solver Ode4 of MATLAB is 0.1 ms, which is what we
chose for the unit propagation delay between minicolumns. In
all simulations, the values of all parameters in (5) are as de-
scribed in Section II unless stated otherwise.

A. ERP in Extended Neural Mass Model

The effects of the parameters of the extended neural mass
model on ERP are illustrated in Fig. 2. The top row illustrates
the saturations in thalamus relay nuclei and stellate cells to
strong input stimuli. With weak input, the response is linear,
leading to a linear relationship between the stimulus and peak
ERP responses. However, with strong input, the neuronal
activity leaves the linear domain of the sigmoid function in (2)
and the shape of ERP changes due to the spiking saturation.
The second row illustrates the effect of stellate cell’s gain
to inputs from neighboring pyramidal cells. There is a shift on
the positive and negative peaks of ERP when increases. The
peak times are N70/P200, N100/P330, and N180/P600 when

is 1, 2, and 2.5, respectively. The ERP will be unstable for
large values of . The third row illustrates the effect of .
The ERP tends to oscillate when increases. Larger values
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Fig. 3. Illustrations of the effects of the proposed integrated model parameters
on the ERP, the neural activity and the BOLD signals. All conditions are similar
to the left column in Fig. 2. The BOLD graphs correspond to the four subplots
in the middle column, respectively, where moving from the top to the bottom
subplots, their BOLD undershoots increase.

of make ERP unstable. Very large values of saturate
the sigmoid functions of all pyramidal cells and produce satu-
rated ERP’s. The effect of the inhibitory interneuron’s gain is
illustrated in the bottom row of Fig. 2. Increasing the causes
more oscillation in the ERP. This is not surprising because the
inhibitory interneurons with negative feedbacks are the main
sources of oscillation in the Jansen’s model.

B. ERP in Extended Neural Mass Model

Before dealing with the nonlinearities in the proposed inte-
grated model, the sample waveform of the ERP, the neural ac-
tivity and the BOLD responses to the impulse stimulus are il-
lustrated in Fig. 3. The conditions generating the left column
in Fig. 2 leads to the neural activities illustrated in the middle
column of Fig. 3. The normalized BOLD responses for four dif-
ferent conditions are shown in the right side of Fig. 3. For this
special case, the main difference between the BOLD responses
is the peak values of the negative undershoot, as reported in the
experimental results of [28], [29].

The relationships between the neural activity, BOLD and
EEG signals for different strengths of the external stimulus are
illustrated in Fig. 4. The input stimulus is the unit step function
and the steady-state values of all variables are plotted in this
figure. Fig. 4(a) and (b) summarizes a contribution of the paper.
The relationship between the stimulus strength and the neural
activity or the EEG signal is nonlinear. As mentioned before,
the nonlinearity of our model is a result of the sigmoid function
in (2).

When there is a strong stimulus, the sigmoid function of the
output pulse rate of the thalamus relay nuclei and also the stel-
late cells saturate, thus the EEG and the neural activity saturate.
With a weak input, the sigmoid function behaves linearly, thus
the relationship is linear. There are several experimental results
in the literature reporting a nonlinear relationship between the
neural activity and the stimulus. For example, Jones and col-
leagues and also Nielsen and Lauritzen independently report
that the relationship between the stimulus and the local field po-
tential (as the neural activity) is like a sigmoid function [8], [9].

Fig. 4. Illustrations of the relationship between the external stimulus, the neural
activity, the ERP and the BOLD in the proposed integrated model. The curves
show the steady-state value of each variable when the stimulus input is the unit
step function. Note that in Fig. 2, the stimulus is the Dirac delta function and
the graphs show the time courses of the ERP, neural activity, and BOLD signal,
respectively, whereas in this figure, the graphs show the steady-state value of
these signals where the stimulus is the unit step function.

Surprisingly, their reported curve is quite similar to Fig. 4(a)
supporting the approximations used for obtaining (12) in the
proposed neural mass model.

Fig. 4(c) shows the saturated curve of the BOLD signal as
a function of the neural activity, a direct consequence of the
nonlinearity in the EBM. Both curves in Fig. 4(a) and (c) have
saturation characteristics, thus the saturating relationship be-
tween the stimulus and the BOLD signal intensifies in Fig. 4(e).
Fig. 4(d) illustrates that although both of the EEG and the neural
activity saturate with strong stimulus, their relationship remains
linear. It should be noted that the proportionality between the
EEG steady-state values and the neural activity in Fig. 4(d)
cannot be extended to their time series as shown in Fig. 3. The
relationship between the EEG and fMRI signals is illustrated
in Fig. 4(f). This relationship is linear for weak stimulus. With
strong stimulus, due to the saturations in the Balloon model and
the neural activity, the BOLD signal saturates faster than the
EEG signal.

C. Synchronicity

The effects of synchronicity on the ERP and BOLD signals
are illustrated in Fig. 5. For the simulation of the synchronicity
in our model, the strength of the stimulus input to all mini-
columns is set constant but the propagation delays between the
stimulus and each of the minicolumns are set differently as:ms

(14)

where is the delay for the th minicolumn (according to (5))
and is the index of the central minicolumn in the center of the
area, is the unit intercolumn distance and is the unit delay.
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Fig. 5. Illustration of the synchronicity in the proposed model. Different delays
[� in (14)] between the stimulus and each of the minicolumns generate different
waveforms for the ERP, the neural activity, and the BOLD in (a)–(c), respec-
tively. The peak values of the ERP (�:� plot) and BOLD (� �� plot) signals
for different delays are plotted in (d). The 6 curves in (a) and (b) correspond to
different delays (� = 0, 2, 4, 6, 8, and 10 ms) where larger delays correspond
to smaller peak values.

In this simulation, when two minicolumns are closer, their stim-
ulus inputs have smaller time lag differences. The 6 curves in
Fig. 5(a)–(c) are obtained using , 2, 4, 6, 8, and 10 ms, re-
spectively. It should be noted that our goal here is to verify the
effects of synchronicity in the production of the ERP and BOLD
signals in the proposed model. However, we did not have access
to the required experimental data to specifically evaluate physi-
ological correspondence of the proposed synchronicity model.

The synchronicity between the minicolumns reduces as the
delay increases, the electrical activities of the minicolumns
cancel each other and the ERP reduces. Indeed, the simulation
in Fig. 5(a) confirms that the ERP’s peak reduces when the delay
increases. On the other hands, the BOLD signal whose response
time is in the order of 10 s is not sensitive to the delays in the
order of ms. Fig. 5(c) and (d) illustrates that the BOLD signals
for all 6 delays are quite similar. Although the delay causes the
activities of the minicolumns occur at different times, but the
overall neural activity and the total consumed energy do not
change and hence the BOLD signals are similar. In Fig. 5(b), al-
though the peaks of the neural activities reduce, the areas under
the curves barely change. Again, this simulation supports the
approximations used for obtaining (12) in the proposed neural
mass model.

IV. CONCLUSION

For the first time, the neural mass model is used to propose a
new integrated MEG/EEG and fMRI model in this paper. The
external stimulus is the input of the model and simultaneous
EEG and BOLD signals are the outputs of the model. In our
method, we extend the classical neural mass model according
to the physiological principles of the cortical minicolumns and
their connections. The populations of different cells interact
with themselves in a minicolumn and also receive inputs from

the axons of the pyramidal cells in the neighboring mini-
columns. Our simulations illustrate that the proposed extended
neural mass model is capable of generating various types of
ERP. Moreover, the extended neural mass model is the base
of a new fMRI model. Indeed, it allows introducing a new
nonlinear model of the neural activity. The resulting neural
activity is used as the input of the extended Balloon model
in order to generate the BOLD signal. Different applications
could be foreseen for this new integrated model. It is possible
that certain neurological diseases change the behavior of some
minicolumns in a brain region. These behaviors are character-
ized in our model by the values of some parameters, which can
be estimated using MEG/EEG and fMRI data. Thus, our model
and its parameterization can help to diagnose or characterize
the related neurological diseases. In addition, the proposed
bottom-up model is instrumental in evaluating the upcoming
top-down combined methods for simultaneous analysis of
MEG/EEG and fMRI.
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