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Abstract—One of the most challenging problems of clustering 
is detecting the exact number of clusters in a dataset. Most of 
the previous methods, presented to solve this problem, estimate 
the number of clusters with model based algorithms, which are 
not able to detect all types of clusters and also face a problem 
in detecting coupled clusters in a dataset. In this paper we 
propose a new method for finding the number of clusters in a 
dataset utilizing information theory and a top-down 
hierarchical clustering algorithm. The algorithm starts from a 
large number of clusters and reduces one cluster in any 
iteration and then allocates its data points to the remaining 
clusters. Finally, by measuring Information Potential, the exact 
number of clusters in a desired dataset is detected. Our method 
shows high capability and stability in detecting the number of 
clusters even in complex datasets, as it is computational 
efficient too. We show the effectiveness of the proposed method 
by experimenting on several artificial and real datasets and 
comparing its results with two recently developed methods for 
finding the number of clusters in a dataset. The comparisons 
show superiority of the proposed method 

I. INTRODUCTION

Dataset classification depends on the methods used for 
classifying, which differs in the similarity and dissimilarity 
measurement tool; consequently there is no concept as a 
single correct classification. There have been investigations 
and attempts to define the optimal classification and the 
optimal number of clusters, known as cluster analysis (CA). 
CA seeks to identify a set of groups which minimize within-
group variations and maximize between-group variations. 

The first step in any CA algorithm is to establish a 
similarity measurement. In the proposed method, an 
information theoretic similarity measurement is used based 
on the Renyi’s definition of entropy [1]. Different kinds of 
entropy are measured after each step in a proposed 
hierarchical algorithm similar to the agglomerative clustering 
but with main differences in its structure. This algorithm, 
called top-down hierarchical algorithm, does not combine 
exactly two clusters to generate a new one; instead, a cluster 
which is detected as the most improper cluster by the entropy 

measurements is blown up and its elements are individually 
allocated to the remaining clusters. Therefore a dendrogram 
like the one in divisive or agglomerative hierarchical 
clustering can not be drawn. At last, the final number of 
clusters is selected upon high variations in Information 
Potential measured at each step. To reduce computational 
complexity in a hierarchical algorithm, especially in 
clustering huge datasets, the proposed algorithm applies 
fuzzy C-means clustering as the initial clustering to create a 
dataset with multiple tiny clusters.  

II. THE TOP-DOWN HIERARCHICAL ALGORITHM 

The proposed algorithm has two main steps: a) finding 
the most improper cluster, known as worst cluster, among 
the existing clusters and splitting it into its constructing data 
points. b) Allocating the freed data points of the worst cluster 
independently to the remaining clusters. 

A. Finding the worst cluster  
In the proposed method an estimation of entropy is 

utilized to detect the worst cluster. Various kinds of entropy 
can be defined between data points of a dataset like Total 
Dataset Entropy (TDE), Between Cluster Entropy (BCE), 
Within Cluster Entropy (WCE) and Between Cluster Entropy 
in Absence of a Cluster (BCEAC). Any of the above 
entropies are a summation of entropy calculated between 
each pairs of data points. Information potential between pairs 
of data points shown by jiI ,  is computed by the following. 
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Where β  is a constant value for all information datums 
and limits the summation of information datums between an 
[0 1] interval and therefore all entropy values will be 
positive. TDE is constant for a dataset and is not altered by 
changing the cluster labels or eliminating any cluster. 
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BCE is the entropy between any pairs of data points from 
different clusters, first proposed by Gockay et al [2]. It is 
clear that this entropy is not changed until the cluster labels 
are altered, therefore it is not changed during any step.  
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Equal to the numbers of clusters, there are quantities for 
WCE and BCEAC in a dataset, so if a dataset has K clusters 
at a step, K quantities for WCE and K quantities for BCEAC 
are defined by the following. 
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Two main relationships exist between the above 
identified entropies which are shown by (6) and (7). 
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The effect of different clusters on BCE is not equal. 
Since the best clustering is achieved when clusters have the 
maximum between dissimilarity, the more the BCE is 
increased, the better the clustering is. The worst cluster 
increases the BCE less than other clusters. To detect this 
cluster, BCE is computed in the absence of any cluster 
(BCEAC). Because BCE is constant during any iteration, it 
can be simply shown from (7) that the cluster with maximum 
BCEAC has the minimum affect on BCE (logarithmic term 
of (7)). Therefore the cluster with maximum BCEAC is 
detected as the worst cluster. After finding the worst cluster, 
it is vanished and its data points are freed by removing 
labels. 

B. Allocating the freed data points 
In the proposed hierarchical clustering algorithm, a freed 

data point is allocated based on the minimum Euclidian 
distance to one of the remaining clusters. The order of 
choosing free data points of the eliminated cluster for 
allocation is important; randomly choosing them might make 
the clustering algorithm unstable. For this purpose, a method 
is needed for appropriate ordering of the free data points. In 
the proposed algorithm, the arrangement of the free data 

points is based on the nearest free data point to data points of 
the rest of the clusters. This means that freed data points are 
allocated in a low to high “minimum Euclidean distance” 
order. The changed cluster after allocating any data point 
will be updated and this process will be repeated until the 
last freed data point is allocated. This method decreases the 
probability of trapping into local minima and stables the 
clustering. 

C. Initial Clustering 
One of the important factors of the proposed algorithm is 

its initial clustering, which benefits from multi-resolution 
concept, and the final clustering highly depends on it. In 
applying the initial clustering two points are considered: 
stability assurance and computational complexity decreasing. 
In the proposed algorithm, fuzzy C-means clustering is used 
as initial clustering. This method guarantees the convergence 
and transfers data points to plenty of clusters, each with few 
data points.  

III. FINDING THE EXACT NUMBER OF CLUSTERS 

Several methods for finding the number of clusters were 
developed for a specific problem or special type of clusters, 
for example Gaussian-distributed mass clusters. These 
methods are often model based which estimate model 
parameters, and also they are not able to detect the real 
number of clusters in datasets containing complex clusters 
and clusters that are coupled or near together. To extract data 
structures further than the second order statistics information 
measurement is utilized in the proposed method.  

Final clustering is chosen when the within cluster 
similarity is maximized and between cluster similarity is 
minimized. As we know decreasing between cluster 
similarity is the same as increasing BCE, therefore in final 
clustering BCE is minimized. Because of the logarithmic 
relation between Information Potential and entropy, 
minimizing BCE is equal to maximizing information 
potential and vice versa. Therefore, for finding the final 
clustering, Information Potential quantities are utilized. In 
this method Between Information Potential in Absence of a 
cluster (BIPAC) and Within Information Potential (WIP) are 
utilized. Experiments show that BIPAC of the worst cluster 
multiplied by 2

WCNG = , where WCN is the number of data 
points in the worst cluster and WIP of the worst cluster 
multiplied by 2

WCNG = are useful tools to find the number of 
clusters in a dataset. Therefore the following equations can 
be written for modified BIPAC and modified WIP. 
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 To show how our method uses the modified BIPAC and 
the modified WIP for finding the final clustering, a dataset 
containing four distinctive Gaussian distributed clusters is 
illustrated in Fig 1.a. Fig 1.b plots the modified BIPAC and 
the modified WIP based on the number of clusters, where 
the algorithms start clustering the desired dataset from a 
high number of clusters and ends to two clusters. By this 
example it can be seen that the final number of clusters is 
chosen four clusters where the modified BIPAC suddenly 
decreases, and the modified WIP has a sudden increase. 
Final clustering is detected where the two sudden variations 
in the modified BIPAC and the modified WIP happen in a 
same location. Based on these ideas, a function named CA 
function is proposed to find the final number of clusters.  
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(b)                                                     (c) 
Figure 1. (a) A dataset with distinctive Gaussian distributed clusters (b) 

Modified BIPAC and Modified WIP (c) CA function.  

 Fig 1.c plots the CA function for the desired dataset. 
The maximum of CA function decides the final number of 
clusters. To show the ability of our method in estimating the 
number of clusters in a dataset containing complicated 
structures, a dataset is illustrated in Fig 2.a and the modified 
BIPAC and the modified WIP are drawn in Fig 2.b. Fig 2.c 
shows the CA function and as it can be seen, four clusters is 
selected as the number of clusters in this dataset. 

IV. EXPERIMENT RESULTS

For evaluating the efficiency of the proposed method for 
finding the exact number of clusters in a dataset, some 
experiments are done on artificial datasets and the results are 
compared with two recently proposed methods for finding 
the number of clusters. The first method proposed by Sugar 

and James [3] is a non-hierarchical method for CA, 
developed on the definition of rate distortion theory. In [3], a 
comparison is done with five non-hierarchical CA algorithms 
which show superiority of this algorithm. This method 
applies C-means clustering on a dataset for NK ,,2,1=
clusters and computes the Mahalabonis distance between 
data points and any cluster prototypes by the following. 
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In (11), p  is the dataset dimension and xC is the center 
or prototype of cluster x. The method proposed by Sugar and 
James estimates the number of clusters by the following: 
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Figure 2. (a) A dataset with complicated structure (b) Modified BIPAC 
and Modified WIP (c) CA function.

The second method is proposed by Jenssen et al [4] 
which is a hierarchical clustering algorithm that uses 
maximum differential BCE to find the number of clusters in 
a dataset by the following: 

 { },,,max 112 −−−= kkk
BCEBCEBCEBCEk     (13) 

To evaluate the ability to detect the exact number of 
clusters in a dataset including closed clusters, an artificial 
dataset is used which contains nine Gaussian-distributed 
mass clusters where all data points are normalized between 
an [0 1] interval. The clusters in this dataset are localized so 
that a method could simply mistake by selecting three 
clusters as the number of clusters instead of nine exact 
clusters. The variances of the Gaussian distributed clusters in 
the three datasets shown in Fig 3 are set to 0.02, 0.04 and 
0.06, respectively.  Table 1 shows the estimated number of 
clusters by the proposed method compared with the Sugar 
and James method [3] and Jenssen et al [4] method. 
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(a)                                                  (b) 

(c) 
Figure 3. Datasets with nine Gaussian-distributed mass clusters, each with 

(a) variance = 0.02, (b) variance = 0.04, (c) variance = 0.06 

TABLE I. ESTIMATED NUMBER OF CLUSTERS FOR DATASETS OF FIG 3

Simulation Dataset Method Estimated Clusters 
Sugar and James [3] (Y=1,1.5) 9 Clusters 

Jenssen et al [4] 3 Clusters 
Gaussian distributed 
mass clusters with 

var = 0.02  Proposed method 9 Clusters 
Sugar and James [3] (Y=1,1.5) 3 Clusters 

Jenssen et al [4] 3 Clusters 
Gaussian distributed 
mass clusters with 

var = 0.04 Proposed method 9 Clusters 
Sugar and James [3] (Y=1,1.5) 3 Clusters

Jenssen et al [4] 3 Clusters 
Gaussian distributed 
mass clusters with 

var = 0.06 Proposed method 9 Clusters 

(a)                                                   (b) 

(c)                                                     (d) 

Figure 4. Datasets with (a) Three line clusters (b) Two centralized clusters 
(c) Two centralized and one regionalized clusters (d) Iris Dataset. 

Fig 4 shows a wide variety of datasets and the estimated 
number of detected clusters by the proposed method is 
compared with the other CA methods in Table 2. 

V. CONCLUSION

A new method to detect the exact number of clusters in a 
dataset based on information theory and hierarchical 
clustering was presented. This method eliminates one cluster 
called the worst cluster at each step and allocates its data 
point to the residual clusters and finds the final clustering 
based on the information measurements done on each step. 
Dispute algorithms which uses Gaussian functions in the 
Parzen window estimator for density estimation [2, 4], the 
proposed method has a good stability encountered to the 
kernel variations and this makes it much less sensitive to the 
kernel size and needless to the kernel selection methods. The 
ability to detect the real number of clusters, compared to the 
recently proposed CA methods shows the superiority and the 
effectiveness of this method. 

TABLE II. ESTIMATED CLUSTERS FOR A VARIETY KIND OF DATASETS

Simulation Dataset Method Estimated Clusters 
Sugar and James [3] 4 Clusters 

Jensen et al [4] 4 Clusters 
Dataset of Fig 1.a 
two dimensional 

dataset Proposed method 4 Clusters  
Sugar and James [3] (Y=1) 2 Clusters 

(Y=2)  2 or 3 Clusters 
Jensen et al [4] 4 Clusters  

Dataset of Fig 2.a  
two dimensional 

dataset 
Proposed method 4 Clusters 

Sugar and James [3] (Y=1,1.5,2) 2 Clusters 
Jensen et al [4] 4 or 5 clusters 

Dataset of Fig 4.a 
two dimensional 

dataset Proposed method 3 Clusters 
Sugar and James [3] (Y=1,1.5,2) 2 Clusters 

Jensen et al [4] 2 Clusters 
Dataset of Fig 4.b 
two dimensional 

dataset Proposed method 2 Clusters 
Sugar and James [3] (Y=1,1.5,2) 2 Clusters 

Jensen et al [4] 5 Clusters 
Dataset of Fig 4.c 
two dimensional 

dataset Proposed method 3 Clusters  
Sugar and James [3] (Y=3) 2 or 3Clusters 

(Y=2) 2 clusters 
Jensen et al [4] 2 Clusters 

Iris Dataset  
(Fig 4.d) four 

dimensional dataset 
Proposed method 3 Clusters 
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