
 
 

 

  

Abstract—Smoothing, while preserving edges, has always 
been a major challenge in image processing. In this paper, we 
propose a new approach that uses segmentation in order to 
avoid inter-region smoothing thus preserving the edges. It is 
common to smooth the image prior to region growing. The 
opposite procedure does not work properly in the presence of 
noise since region growing is very noise sensitive. To overcome 
this difficulty we adapted a robust region growing algorithm. 
Since region growing is very resource consuming, we do not 
perform it for every pixel. Instead, we divide the image into a 
number of overlapping blocks for which we carry out the 
segmentation. Then, we use the results for some of the core 
pixels in that block. Now that the regions are known, we 
proceed to smooth each region by a fuzzy approach 
emphasizing the pixels residing in it. The performance of this 
filter is compared to that of the bilateral filter and it is shown 
that the new method generates superior results. 

I. INTRODUCTION 

ANY applications require the image to be smoothed in 
the first stage. The very idea behind smoothing is to 

make pixels similar to their surroundings by using the 
information of other pixels in the vicinity. One simple 
method is to replace each pixel by a weighted average of its 
neighboring pixels. Although this method can reduce noise 
and smooth the image, it tends to blur the edges. Many 
techniques have been proposed to preserve the edges while 
smoothing [1]-[17]. In the following, we briefly describe 
some of the most important methods related to our work.  

By solving partial differential equations in anisotropic 
diffusion [11], image is smoothed locally but averaging 
across the edges is prohibited. This iterative approach tends 
to promote intra-region smoothing while preventing inter-
region smoothing.  At first the structure of the regions is 
unknown (If the true positions of the edges were known the 
problem would already be solved.) but the current best 
estimate of the boundaries gets more and more precise with 
each iteration. The very idea of supporting smoothing within 
a region and penalizing smoothing across the edges also 
exists in our method but the way we construct an estimate of 
the boundaries is rather different. In anisotropic diffusion the 
estimate of the region boundaries is achieved iteratively 
throughout the whole process while in our method we do it in 
one run with a robust region growing algorithm.  For an 
improved version of anisotropic diffusion see [21]. 

Median filtering is a simple and effective method for noise 
 
 

(especially speckle) reduction that replaces a pixel with the 
median of the pixels in a local window. This filter usually 
faces problems around corners or features that are less than 
half width of the filter window. Topological median filtering 
[16] uses fuzzy connectedness of pixels to enhance the 
performance of the median filter, using four filters: TD, TL, 
TDL, and TLD. The drawback of this approach is that for 
light features on dark background TD or TLD but for dark 
features on light background TL or TDL should be used. 
This filter and our filter share the use of the topology of the 
image for filtering but for that, topological median filter uses 
the concept of �-connectivity. Moreover, in our filter we 
replace a pixel with a weighted average of its neighbors 
while in topological median filter the pixel is replaced by 
one of the pixels in the vicinity (sometimes the median of 
them).    

Bilateral filter proposed by Tomasi and Manduchi [14] is 
a non-iterative filter that combines pixel intensities based on 
both their geometric closeness and their photometric 
similarity. In bilateral filter each pixel is replaced by a 
weighted average of some neighboring pixels. These weights 
are generated by multiplying two kernels: one based on the 
geometric closeness of the pixels and one based on the 
similarity of their intensities. The further a pixel from the 
center of the mask and the more different its intensity from 
that of the central pixel, the lower its weight in averaging. It 
is common to use two Gaussian kernels for range and 
similarity functions in bilateral filters. We too use two 
kernels in our filter. The range kernel is like that of the 
bilateral filter but the similarity kernel is constructed rather 
differently. Although we used a Gaussian kernel for this 
cause, the different definition of similarity is the origin of 
this difference.  

Noise changes the intensity of the pixels. Therefore, 
basing the similarity of the pixels only on their intensities 
would be prone to errors. Instead, we compute the similarity 
of the region each pixel resides in to the central pixel and 
assume that all the pixels in that region have the same 
similarity value. We will give more details on this later. 

Elad [20] illustrated the theoretical connection of the 
bilateral filter to the Bayesian approach with a novel penalty 
function. He also suggested some improvements for the 
bilateral filter. Another filter which is based on bilateral filter 
is trilateral filter [15].  

The new filter we propose here is based on segmentation. 
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First, we segment the image using a robust region growing 
scheme then we use a Gaussian mask for smoothing but in 
order to avoid averaging across the edges we multiply our 
Gaussian mask by another mask built based on the similarity 
of the regions. 

In Section II, we describe our method for region growing 
which is robust to noise. Section III discusses how we use 
the result of region growing for fuzzy segmentation and then 
smoothing the image with emphasis on intra-region 
information. Experimental results are presented in Section 
IV and conclusions in Section V. 

II. ROBUST REGION GROWING 

For being robust, our algorithm checks two sets of 
conditions; if at least one of them holds, the investigated 
pixel is added to the region. 

The expansion of the region is done in four directions. In 
other words, starting from a pixel, we check four pixels: 
right, left, upward, and downward pixels. If the pixel from 
which we want to expand the region is x, we denote these 
four neighbors by: xLeft, xRight, xUp, and xDown, respectively. 
For brevity, we define   xD as the neighbor pixel in direction 
D, where D can be left, right, up, or down. xDD is the next 
pixel in the same direction. xSP is the seed point pixel in 
region R. 

 
Fig. 1.  Directions of expansion for the central pixel. 

A. First Condition 
If the gray value of a neighbor pixel, I(xD), and the gray 
value of the next pixel in the direction of expansion, I(xDD), 
are less than a threshold different from the original pixel, the 
investigated pixel is added to the region: 
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The threshold is calculated based on the local variance of the 
image. Due to our simulations, for best results, the threshold 
should be between �/2 and �/4. 

This condition prevents a noisy pixel to be considered in 
the region. The only fallacious situation is when noise affects 
the investigated pixel and its neighbor in the direction of 
expansion in a way that the intensity of both moves into the 
vicinity of the seed point’s intensity. This situation is highly 
unlikely considering pixels’ noise being uncorrelated.  

While this condition guards against intruders, it may not 
count some correct pixels in the region, especially when the 
noise level is high or when we are examining edge pixels. To 
avoid this problem, we introduce the second condition. 

B. Second Condition 
The investigated pixel (I(xD)) is joined to the region if the 

similarity of the original pixel (I(x)) to its neighborhood, is 
more than the similarity of the next pixel in the direction of 
expansion (I(xDD)) to its neighborhood. The neighborhood 
(N) of each pixel, as shown in Figure 2, is defined as a six 
pixel rectangle that contains that pixel. To find the similarity 
of a pixel to a neighborhood, we calculate the sum of 
absolute difference between the pixel’s intensity and the 
intensity of the neighboring pixel. The smaller this number, 
the higher the similarity. 

For example, in Figure 3, we want to find out if pixel 5 
belongs to the same region as pixel 6. The direction of 
expansion is upwards. We investigate the similarity of pixel 
6 to its neighborhood pixels (2, 5, 8, 3 and 9) and pixel 4 to 
its neighborhood (1, 7, 2, 5 and 8). Pixel 5 joins the region 
if: 
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Fig. 2.  Neighborhood of pixel 6 when the direction of expansion is 
upwards from 6 to 5. When expanding in other directions just rotate the 
figure. 
 

Near the corners, this procedure may face problems. 
Therefore, we should emphasize the effect of the 
investigated pixel in the summation. To do this, we assign to 
the investigated pixel, the weight n which is greater than 1. 
Our simulations showed that for best result, n should be 2 or 
3. 

 
Fig. 3.  The investigated pixel is pixel 5; we reach this pixel from pixel 6 
with upward direction of expansion. We compare the similarity of pixels 6 
and 4 to their neighbors.  

Performing region growing takes a lot of time, especially 
when the window size is large. To achieve a reasonable 
delay for our filter we do not carry out region growing for 
every pixel we want to smooth. Instead, we divide the image 
into some overlapping blocks and run the region growing 
algorithm once for each block (Here we choose the blocks to 
be squares and we refer to their sizes as window size of the 



 
 

 

filter). By this approach, we obtain the region structure of 
each block, so we can proceed to smooth the pixels inside it 
with its region information. As for the pixels residing near 
the corners or ends of each block, the result of smoothing 
would not be accurate, since we can only use the information 
of neighboring pixels of one side of them (The pixels on the 
other sides have been outside the block and were not 
considered when region growing). To overcome this 
undesired effect, we only smooth some of the central pixels 
of each block, the core pixels, and leave the other pixels 
untouched at this juncture (Again, here we use a square core 
and call its size the core size of the filter). The pixels that 
were not smoothed in a specific block will be smoothed in an 
overlapping neighboring block. To smooth all pixels in the 
image, the overlap of two blocks should be equal to window 
size minus core size so that each pixel belongs to the core of 
one block (Figure 4). In other words, with this condition, the 
cores of the overlapping blocks partition the image.    

 

 
Fig. 4. One block of a filter with window size of 11 and core size of 5 
pixels. Region growing is performed on all the 121 pixels but only the dark 
gray pixels are smoothed at this step, using all and nothing but the 121 
pixels in this block. The remaining pixels in this block are smoothed when 
we are treating the neighboring blocks; for example the light gray pixels 
belong to the core of the block to the right (Half of its outline is painted in 
light gray).   

III. FUZZY SMOOTHING 

Now that we have segmented the image, we can smooth it 
by only using the pixels in each region for its members. For 
example, we can use a Gaussian mask but set the weight of 
pixels outside the region to zero. This method not only 
preserves the edges but also exaggerates them. However, by 
using fewer elements in smoothing, we may not be able to 
reduce the noise very well. Thus, a better approach would be 
to use the neighboring regions in smoothing the intended 
region as well. 

A. Fuzzy Segmentation 
A classical set wholly includes or wholly excludes an 

element; the choice is binary. In fuzzy sets, membership 
becomes a matter of degree. To be more precise, in fuzzy 

logic, we map each member to a value in the interval [0,1] 
that defines its degree of membership (DOM). Zero meaning 
that the element is not a member, one defining absolute 
membership and a value in between denotes partial 
membership. The function used for this is called a 
membership function. 

B. Fuzzifying the Result and Smoothing 
Region growing gives us a number of classical sets but we 

can use this information to build fuzzy sets for our cause. In 
our study, we used the mean gray value of pixels in a region 
to define the DOM of its elements in a set so all pixels in a 
region have the same DOM. Let S be the classical set of 
pixels which are in the region we want to smooth and S’ a 
classical set of pixels in another region which �’ is a member 
of. Also, let the mean gray value of the pixels in S and S’ be 
m and m’, respectively. Now we define a fuzzy set F for 
region indicated by classical set S. This fuzzy set has a 
membership function denoted by �F. 
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Here, �f is a parameter that defines the sharpness of the 
membership function.  
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Fig. 5.  (a) a block of image containing three regions. The weights are to be 
computed for finding the intensity of the pixel with the white dot in the 
smoothed image; (b) distance weights of neighboring pixels for computing 
the output value of the central pixel; (c) degree of membership of each pixel 
in the set for the central pixel; (d) final weights by multiplying distance 
weights by the corresponding degree of memberships. 
The DOM of a pixel in S is 1 for the fuzzy set F because a 
pixel is an absolute member of the region it resides in. The 
more alike a region is to our intended region, the higher the 
DOM of its members. 
 

To find the value of a pixel in the smoothed image, we 
first have to build the membership function for the region 
containing that pixel. The same membership function can be 
used for all of the pixels in a region. The output of the filter 



 
 

 

is attained by the following formula:  
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Here, Iout(x) is the intensity value of pixel x in the output 
smoothed image, Iin(�) is the intensity value of pixel � in the 
input image, and c(x,�) is the domain kernel that designates 
weights to the pixels based on their positional distance from 
the intended pixel (Geometrical distance between x and � ). It 
is common to choose a Gaussian function with standard 
deviation �c for this function. �Fx is the membership function 
of the fuzzy set Fx which is an extension of the classical set 
that includes pixel x. Nx is a neighborhood of pixel x. In our 
work, we defined it as the whole block in which region 
growing is performed. To maintain the original image’s 
intensity, we normalize the sum by: 
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An example of the weights of the neighboring pixels for 
calculating the output value of the central pixel (marked by a 
white dot) is shown in Figure 4. 

IV. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the 
proposed filter by evaluating the bias and variance of the 
output image and its quality. We also compare the proposed 
filter to bilateral, wiener, and median filters.  

 

 
(a)           (b) 

 
  (c) 

Fig. 6.  Mean of output image versus input image standard deviation for 
filter with window and core size of  (a) [7,3];  (b) [9,5];  (c)[11,7] . 

A. Bias 
First, we investigate the response of our filter to Gaussian 

variables. To this end, we build a number of 100×100 
images composed of pure Gaussian white noise with the 
mean of 128 and different variances, 100 images for each. 
Then we pass these images through our filter and average 
over the outputs intensity.  

For investigating the filter’s bias, the mean intensity of the 
output image versus the standard deviation of the input 

image is plotted for different window and core sizes. The 
filter’s bias is less than 1 (for window and core size of 9 and 
5, it is less than 0.3) so it is absolutely negligible.  

B. Standard Deviation 
Figure 7 shows the standard deviation of the output image 

versus that of the input image. As this figure shows there is a 
linear relation between them. The slope of the interpolated 
lines are 0.40025, 0.34838, and 0.37525 for window and 
core size of [7,3], [9,5], and [11,7], respectively; �f and �d 
are both 1. 

 

 
(a)           (b) 

 
 

 
(c) 

 
Fig. 7.  Standard deviation of output image versus standard deviation of 
input image for  a filter  with window and core size of (a) [7,3];  (b) [9,5];  
(c) [11,7] ;  averaged over 100 image for 101 points. 
 
We achieve maximum smoothing when we use a 9×9 
window and 5×5 core. Increasing the core size and window 
size beyond that will result in more computations and less 
smoothing.  

C. Histogram Analysis 
Figure 8 shows the normalized histogram of the output 

images for different window sizes and various input standard 
deviations. As it can be seen, the response is symmetric 
averaged around 128, which means the filter does not change 
the image intensity (�f and �d are both 1). 
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Fig. 8.  Histogram of input (dotted line) and output (solid line) for input 
Gaussian noise of 128 mean and standard deviation of (a) 16 for window 
and core size of [9,5]  (b) 16 for window and core size of [11,7]  (c) 32 for 
window and core size of [9,5]  (d)  32 for window and core size of [11,7]. 

 

 
Fig. 9. Original image used for examining the edge preserving 
characteristics of our filter. One pixel on the edge and one two pixels away 
from the edge are marked. 
 

 
(a) 

 
(b) 

 
Fig. 10.  The histogram of a pixel (a) on the edge; (b) two pixels far from 
the edge. 

D. Edge Preserving Characteristics 
The most important characteristic of this filter is its 

preserving edges. We built an image with two areas one with 
intensity of 50 and another with 25 (Fig. 8). We added noise 
to this image and constructed 500 images with noise standard 
deviation of 16 and 500 images with 32. We then passed 

these images through our filter and investigated two pixels, 
one on the edge and another two pixels from the edge in the 
region with intensity 25. The histogram of this pixel intensity 
after passing through median, bilateral, and our new filter is 
plotted in Figure 10. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Statistics of Sobel edge detector’s output to an image with additive 
Gaussian noise with: (a) �=25; (b) �=50; (c) �=75; (d) �=100.  

 
The histogram should be symmetric around 25. As Figure 

11 illustrates, in the case of the pixel near the edge but not on 
it, all filters are almost the same with median filter having a 
slightly better performance. However, for the pixels on the 
edge, our new filter gives the best performance and is the 
only filter whose output histogram averages around 25. 

In another set of simulations, we added white Gaussian 



 
 

 

noise to Figure 9, filtered it, and determined the edge pixels 
by a Sobel edge detector. The number of pixels determined 
as edge pixels versus their offset from the edge for 
unprocessed noisy image, image filtered with bilateral, and 
image filtered with our new filter are plotted in Figure 11. 
Each edge consists of two sides, therefore, in the result of the 
edge detector, the two pixels on each side of the edge are 
considered as one pixel. The window and core size for the 
new filter are 9 and 5 and the window size of the bilateral 
filter is 5. For both filters, the �’s of the Gaussian kernels are 
2. The results are averaged over 100 images. They show the 
superiority of the proposed method. 

 
Fig.  12.  First row is the input image, second row is the output of median 
filter, third row is the output of bilateral filter and the fourth row is the 
output of our new filter. In the first column, no noise is added, in the 
second column noise is {-1 0 1}, and in the third column noise is {-2 0 2}.  
 

Figure 12 shows a cross with the width of two pixels. The 
gray values are normalized to 12. Intensity of the 
background is 10 and that of the cross is 2.  Additive noise is 
chosen uniformly from the set {-1,0,1} for the second 
column and {-2,0,2} for the third column. The output of our 
filter is compared to wiener and median filters, showing its 
superiority. 
 

 
 
Fig. 13.  (a) Original image; (b) Additive white Gaussian noise �=16; (c) 
Additive white Gaussian noise �=32; (d) Additive white Gaussian noise 
�=64. 

 
Fig. 14.  First row is the output of bilateral filter and the second row output 
of our new filter. Image noise are 16, 24 and 32 for first, second, and third 
columns, respectively. 
 

Our filter can delicately preserve corners and narrow 
features which are more than 1 pixel wide (Figs. 12-13). The 
filter cannot distinguish between two features that are as 
close as one pixel if the noise level is high (variance of 
additive noise is higher than 1.5 times that of the original 
image). 

E. Qualitative Smoothing Results 
When performed on noiseless images, the new filter can 

preserve the main edges and smooth each region 
independently. In order to prevent smoothing across the 
edges, here �f should not be large. Since the image’s noise 
level is low, we do not need to use many pixels in our 
weighting to achieve an acceptable result. 

Figure 15 shows an image smoothed using the new filter. 
Note that the main edges of the face are preserved while 
some small features like tiny fluctuations in the stone are 
smoothed. 
 



 
 

 

 
(a) 

 
(b) 

 
(c)  

 
Fig. 15. Persian soldier, Perspolis. Please note that the figure has undergone 
histogram equalization so the details be more noticable, Iran; (a) Original;  
(b) Smoothed image using bilateral filter with �c=2,  �f=10 and window 
size of 5; (c) Smoothed Image by the new filter with window size of 9, core 
size of 5, �c=2, and �f=1. 

 

F. Noise Cancellation 
Our filter can also be used for noise cancellation. In 

contrast to smoothing, for this purpose the value of �f should 
be relatively high. In addition, for optimal results, we should 
increase the threshold of region growing. This difference in 

parameters is to make the region growing and smoothing 
more robust to noise. If the region growing conditions are set 
strict, we may exclude some noisy pixels from their original 
region. Besides, by using more pixels in our averaging, we 
will have a better diversity thus a better estimation of the 
pixels’ original value. Some results of canceling the noise of 
Lena’s image are brought in Figure 16. Each column 
corresponds to a different noise level.  

Looking at Figure 16, we can observe that when the noise 
level is not very high, the new filter works better than the 
bilateral filter. But in images with a high noise level, the new 
filter cannot diminish the noise much more than bilateral and 
its edge preserving properties are only slightly better. This is 
because the region growing algorithm, though robust, does 
not work well when the image is very noisy. Therefore, it is 
recommended that highly noisy images are passed through 
this filter more than once or the noise level is diminished to 
some extent with another method prior to inputting the image 
to our new filter. 

V. CONCLUSIONS 

The proposed filter performs intra-region smoothing 
without mixing different regions. It also sharpens the 
boundaries. In addition, it does not add bias to the image and 
keeps the image mean intensity level intact, while reducing 
the image variance as a result of smoothing. 
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Fig. 16. First row shows the input images. Second row is the output of bilateral filter with window size of 5, �d=2, and �r=10. Third row is the output of the 
new filter with window size of 5 core size of 1, �d=2, and �f=10. The additive noise is Gaussian and in the first column its � is 8, in second column 16 and 
in third column 32.  
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