

Abstract—Smoothing, while preserving edges, has always
been a major challenge in image processing. In this paper, we
propose a new approach that uses segmentation in order to
avoid inter-region smoothing thus preserving the edges. It is
common to smooth the image prior to region growing. The
opposite procedure does not work properly in the presence of
noise since region growing is very noise sensitive. To overcome
this difficulty we adapted a robust region growing algorithm.
Since region growing is very resource consuming, we do not
perform it for every pixel. Instead, we divide the image into a
number of overlapping blocks for which we carry out the
segmentation. Then, we use the results for some of the core
pixels in that block. Now that the regions are known, we
proceed to smooth each region by a fuzzy approach
emphasizing the pixels residing in it. The performance of this
filter is compared to that of the bilateral filter and it is shown
that the new method generates superior results.

I. INTRODUCTION

ANY applications require the image to be smoothed in
the first stage. The very idea behind smoothing is to

make pixels similar to their surroundings by using the
information of other pixels in the vicinity. One simple
method is to replace each pixel by a weighted average of its
neighboring pixels. Although this method can reduce noise
and smooth the image, it tends to blur the edges. Many
techniques have been proposed to preserve the edges while
smoothing [1]-[17]. In the following, we briefly describe
some of the most important methods related to our work.

By solving partial differential equations in anisotropic
diffusion [11], image is smoothed locally but averaging
across the edges is prohibited. This iterative approach tends
to promote intra-region smoothing while preventing inter-
region smoothing. At first the structure of the regions is
unknown (If the true positions of the edges were known the
problem would already be solved.) but the current best
estimate of the boundaries gets more and more precise with
each iteration. The very idea of supporting smoothing within
a region and penalizing smoothing across the edges also
exists in our method but the way we construct an estimate of
the boundaries is rather different. In anisotropic diffusion the
estimate of the region boundaries is achieved iteratively
throughout the whole process while in our method we do it in
one run with a robust region growing algorithm. For an
improved version of anisotropic diffusion see [21].

Median filtering is a simple and effective method for noise

(especially speckle) reduction that replaces a pixel with the
median of the pixels in a local window. This filter usually
faces problems around corners or features that are less than
half width of the filter window. Topological median filtering
[16] uses fuzzy connectedness of pixels to enhance the
performance of the median filter, using four filters: TD, TL,
TDL, and TLD. The drawback of this approach is that for
light features on dark background TD or TLD but for dark
features on light background TL or TDL should be used.
This filter and our filter share the use of the topology of the
image for filtering but for that, topological median filter uses
the concept of �-connectivity. Moreover, in our filter we
replace a pixel with a weighted average of its neighbors
while in topological median filter the pixel is replaced by
one of the pixels in the vicinity (sometimes the median of
them).

Bilateral filter proposed by Tomasi and Manduchi [14] is
a non-iterative filter that combines pixel intensities based on
both their geometric closeness and their photometric
similarity. In bilateral filter each pixel is replaced by a
weighted average of some neighboring pixels. These weights
are generated by multiplying two kernels: one based on the
geometric closeness of the pixels and one based on the
similarity of their intensities. The further a pixel from the
center of the mask and the more different its intensity from
that of the central pixel, the lower its weight in averaging. It
is common to use two Gaussian kernels for range and
similarity functions in bilateral filters. We too use two
kernels in our filter. The range kernel is like that of the
bilateral filter but the similarity kernel is constructed rather
differently. Although we used a Gaussian kernel for this
cause, the different definition of similarity is the origin of
this difference.

Noise changes the intensity of the pixels. Therefore,
basing the similarity of the pixels only on their intensities
would be prone to errors. Instead, we compute the similarity
of the region each pixel resides in to the central pixel and
assume that all the pixels in that region have the same
similarity value. We will give more details on this later.

Elad [20] illustrated the theoretical connection of the
bilateral filter to the Bayesian approach with a novel penalty
function. He also suggested some improvements for the
bilateral filter. Another filter which is based on bilateral filter
is trilateral filter [15].

The new filter we propose here is based on segmentation.

Fuzzy Edge Preserving Smoothing Filter Using Robust Region
Growing

Amirshahed Mehrtash, Student Member, IEEE, Shahab Vahdat, and Hamid Soltanian-Zadeh, Senior
Member, IEEE

M

First, we segment the image using a robust region growing
scheme then we use a Gaussian mask for smoothing but in
order to avoid averaging across the edges we multiply our
Gaussian mask by another mask built based on the similarity
of the regions.

In Section II, we describe our method for region growing
which is robust to noise. Section III discusses how we use
the result of region growing for fuzzy segmentation and then
smoothing the image with emphasis on intra-region
information. Experimental results are presented in Section
IV and conclusions in Section V.

II. ROBUST REGION GROWING

For being robust, our algorithm checks two sets of
conditions; if at least one of them holds, the investigated
pixel is added to the region.

The expansion of the region is done in four directions. In
other words, starting from a pixel, we check four pixels:
right, left, upward, and downward pixels. If the pixel from
which we want to expand the region is x, we denote these
four neighbors by: xLeft, xRight, xUp, and xDown, respectively.
For brevity, we define xD as the neighbor pixel in direction
D, where D can be left, right, up, or down. xDD is the next
pixel in the same direction. xSP is the seed point pixel in
region R.

Fig. 1. Directions of expansion for the central pixel.

A. First Condition
If the gray value of a neighbor pixel, I(xD), and the gray
value of the next pixel in the direction of expansion, I(xDD),
are less than a threshold different from the original pixel, the
investigated pixel is added to the region:

threshxIxIthreshxIxI DD
SP

D
SP ≤−≤−)()((&))()(

The threshold is calculated based on the local variance of the
image. Due to our simulations, for best results, the threshold
should be between �/2 and �/4.

This condition prevents a noisy pixel to be considered in
the region. The only fallacious situation is when noise affects
the investigated pixel and its neighbor in the direction of
expansion in a way that the intensity of both moves into the
vicinity of the seed point’s intensity. This situation is highly
unlikely considering pixels’ noise being uncorrelated.

While this condition guards against intruders, it may not
count some correct pixels in the region, especially when the
noise level is high or when we are examining edge pixels. To
avoid this problem, we introduce the second condition.

B. Second Condition
The investigated pixel (I(xD)) is joined to the region if the

similarity of the original pixel (I(x)) to its neighborhood, is
more than the similarity of the next pixel in the direction of
expansion (I(xDD)) to its neighborhood. The neighborhood
(N) of each pixel, as shown in Figure 2, is defined as a six
pixel rectangle that contains that pixel. To find the similarity
of a pixel to a neighborhood, we calculate the sum of
absolute difference between the pixel’s intensity and the
intensity of the neighboring pixel. The smaller this number,
the higher the similarity.

For example, in Figure 3, we want to find out if pixel 5
belongs to the same region as pixel 6. The direction of
expansion is upwards. We investigate the similarity of pixel
6 to its neighborhood pixels (2, 5, 8, 3 and 9) and pixel 4 to
its neighborhood (1, 7, 2, 5 and 8). Pixel 5 joins the region
if:

 ��
==

−<−
8,7,5,2,19,8,5,3,2

)4()()6()(
ii

IiIIiI

Fig. 2. Neighborhood of pixel 6 when the direction of expansion is
upwards from 6 to 5. When expanding in other directions just rotate the
figure.

Near the corners, this procedure may face problems.
Therefore, we should emphasize the effect of the
investigated pixel in the summation. To do this, we assign to
the investigated pixel, the weight n which is greater than 1.
Our simulations showed that for best result, n should be 2 or
3.

Fig. 3. The investigated pixel is pixel 5; we reach this pixel from pixel 6
with upward direction of expansion. We compare the similarity of pixels 6
and 4 to their neighbors.

Performing region growing takes a lot of time, especially
when the window size is large. To achieve a reasonable
delay for our filter we do not carry out region growing for
every pixel we want to smooth. Instead, we divide the image
into some overlapping blocks and run the region growing
algorithm once for each block (Here we choose the blocks to
be squares and we refer to their sizes as window size of the

filter). By this approach, we obtain the region structure of
each block, so we can proceed to smooth the pixels inside it
with its region information. As for the pixels residing near
the corners or ends of each block, the result of smoothing
would not be accurate, since we can only use the information
of neighboring pixels of one side of them (The pixels on the
other sides have been outside the block and were not
considered when region growing). To overcome this
undesired effect, we only smooth some of the central pixels
of each block, the core pixels, and leave the other pixels
untouched at this juncture (Again, here we use a square core
and call its size the core size of the filter). The pixels that
were not smoothed in a specific block will be smoothed in an
overlapping neighboring block. To smooth all pixels in the
image, the overlap of two blocks should be equal to window
size minus core size so that each pixel belongs to the core of
one block (Figure 4). In other words, with this condition, the
cores of the overlapping blocks partition the image.

Fig. 4. One block of a filter with window size of 11 and core size of 5
pixels. Region growing is performed on all the 121 pixels but only the dark
gray pixels are smoothed at this step, using all and nothing but the 121
pixels in this block. The remaining pixels in this block are smoothed when
we are treating the neighboring blocks; for example the light gray pixels
belong to the core of the block to the right (Half of its outline is painted in
light gray).

III. FUZZY SMOOTHING

Now that we have segmented the image, we can smooth it
by only using the pixels in each region for its members. For
example, we can use a Gaussian mask but set the weight of
pixels outside the region to zero. This method not only
preserves the edges but also exaggerates them. However, by
using fewer elements in smoothing, we may not be able to
reduce the noise very well. Thus, a better approach would be
to use the neighboring regions in smoothing the intended
region as well.

A. Fuzzy Segmentation
A classical set wholly includes or wholly excludes an

element; the choice is binary. In fuzzy sets, membership
becomes a matter of degree. To be more precise, in fuzzy

logic, we map each member to a value in the interval [0,1]
that defines its degree of membership (DOM). Zero meaning
that the element is not a member, one defining absolute
membership and a value in between denotes partial
membership. The function used for this is called a
membership function.

B. Fuzzifying the Result and Smoothing
Region growing gives us a number of classical sets but we

can use this information to build fuzzy sets for our cause. In
our study, we used the mean gray value of pixels in a region
to define the DOM of its elements in a set so all pixels in a
region have the same DOM. Let S be the classical set of
pixels which are in the region we want to smooth and S’ a
classical set of pixels in another region which �’ is a member
of. Also, let the mean gray value of the pixels in S and S’ be
m and m’, respectively. Now we define a fuzzy set F for
region indicated by classical set S. This fuzzy set has a
membership function denoted by �F.

)
2

)(
exp()(

2

f
F

mm
σ

ζµ
′−−=′ (1)

Here, �f is a parameter that defines the sharpness of the
membership function.

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (a) (b)

1
2 3

4 5
6

7
8 9

10 11

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (c) (d)

Fig. 5. (a) a block of image containing three regions. The weights are to be
computed for finding the intensity of the pixel with the white dot in the
smoothed image; (b) distance weights of neighboring pixels for computing
the output value of the central pixel; (c) degree of membership of each pixel
in the set for the central pixel; (d) final weights by multiplying distance
weights by the corresponding degree of memberships.
The DOM of a pixel in S is 1 for the fuzzy set F because a
pixel is an absolute member of the region it resides in. The
more alike a region is to our intended region, the higher the
DOM of its members.

To find the value of a pixel in the smoothed image, we
first have to build the membership function for the region
containing that pixel. The same membership function can be
used for all of the pixels in a region. The output of the filter

is attained by the following formula:

�
∈

=
x

x
N

Finout xcI
xk

xI
ζ

ζµζζ)(),()(
)(

1
)((3)

Here, Iout(x) is the intensity value of pixel x in the output
smoothed image, Iin(�) is the intensity value of pixel � in the
input image, and c(x,�) is the domain kernel that designates
weights to the pixels based on their positional distance from
the intended pixel (Geometrical distance between x and �). It
is common to choose a Gaussian function with standard
deviation �c for this function. �Fx is the membership function
of the fuzzy set Fx which is an extension of the classical set
that includes pixel x. Nx is a neighborhood of pixel x. In our
work, we defined it as the whole block in which region
growing is performed. To maintain the original image’s
intensity, we normalize the sum by:

�
∈

=
x

x
N

Fxcxk
ζ

ζµζ)(),()((2)

An example of the weights of the neighboring pixels for
calculating the output value of the central pixel (marked by a
white dot) is shown in Figure 4.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the
proposed filter by evaluating the bias and variance of the
output image and its quality. We also compare the proposed
filter to bilateral, wiener, and median filters.

(a) (b)

 (c)

Fig. 6. Mean of output image versus input image standard deviation for
filter with window and core size of (a) [7,3]; (b) [9,5]; (c)[11,7] .

A. Bias
First, we investigate the response of our filter to Gaussian

variables. To this end, we build a number of 100×100
images composed of pure Gaussian white noise with the
mean of 128 and different variances, 100 images for each.
Then we pass these images through our filter and average
over the outputs intensity.

For investigating the filter’s bias, the mean intensity of the
output image versus the standard deviation of the input

image is plotted for different window and core sizes. The
filter’s bias is less than 1 (for window and core size of 9 and
5, it is less than 0.3) so it is absolutely negligible.

B. Standard Deviation
Figure 7 shows the standard deviation of the output image

versus that of the input image. As this figure shows there is a
linear relation between them. The slope of the interpolated
lines are 0.40025, 0.34838, and 0.37525 for window and
core size of [7,3], [9,5], and [11,7], respectively; �f and �d
are both 1.

(a) (b)

(c)

Fig. 7. Standard deviation of output image versus standard deviation of
input image for a filter with window and core size of (a) [7,3]; (b) [9,5];
(c) [11,7] ; averaged over 100 image for 101 points.

We achieve maximum smoothing when we use a 9×9
window and 5×5 core. Increasing the core size and window
size beyond that will result in more computations and less
smoothing.

C. Histogram Analysis
Figure 8 shows the normalized histogram of the output

images for different window sizes and various input standard
deviations. As it can be seen, the response is symmetric
averaged around 128, which means the filter does not change
the image intensity (�f and �d are both 1).

 (a) (b)

 (c) (d)

Fig. 8. Histogram of input (dotted line) and output (solid line) for input
Gaussian noise of 128 mean and standard deviation of (a) 16 for window
and core size of [9,5] (b) 16 for window and core size of [11,7] (c) 32 for
window and core size of [9,5] (d) 32 for window and core size of [11,7].

Fig. 9. Original image used for examining the edge preserving
characteristics of our filter. One pixel on the edge and one two pixels away
from the edge are marked.

(a)

(b)

Fig. 10. The histogram of a pixel (a) on the edge; (b) two pixels far from
the edge.

D. Edge Preserving Characteristics
The most important characteristic of this filter is its

preserving edges. We built an image with two areas one with
intensity of 50 and another with 25 (Fig. 8). We added noise
to this image and constructed 500 images with noise standard
deviation of 16 and 500 images with 32. We then passed

these images through our filter and investigated two pixels,
one on the edge and another two pixels from the edge in the
region with intensity 25. The histogram of this pixel intensity
after passing through median, bilateral, and our new filter is
plotted in Figure 10.

(a)

(b)

(c)

(d)

Fig. 11. Statistics of Sobel edge detector’s output to an image with additive
Gaussian noise with: (a) �=25; (b) �=50; (c) �=75; (d) �=100.

The histogram should be symmetric around 25. As Figure

11 illustrates, in the case of the pixel near the edge but not on
it, all filters are almost the same with median filter having a
slightly better performance. However, for the pixels on the
edge, our new filter gives the best performance and is the
only filter whose output histogram averages around 25.

In another set of simulations, we added white Gaussian

noise to Figure 9, filtered it, and determined the edge pixels
by a Sobel edge detector. The number of pixels determined
as edge pixels versus their offset from the edge for
unprocessed noisy image, image filtered with bilateral, and
image filtered with our new filter are plotted in Figure 11.
Each edge consists of two sides, therefore, in the result of the
edge detector, the two pixels on each side of the edge are
considered as one pixel. The window and core size for the
new filter are 9 and 5 and the window size of the bilateral
filter is 5. For both filters, the �’s of the Gaussian kernels are
2. The results are averaged over 100 images. They show the
superiority of the proposed method.

Fig. 12. First row is the input image, second row is the output of median
filter, third row is the output of bilateral filter and the fourth row is the
output of our new filter. In the first column, no noise is added, in the
second column noise is {-1 0 1}, and in the third column noise is {-2 0 2}.

Figure 12 shows a cross with the width of two pixels. The
gray values are normalized to 12. Intensity of the
background is 10 and that of the cross is 2. Additive noise is
chosen uniformly from the set {-1,0,1} for the second
column and {-2,0,2} for the third column. The output of our
filter is compared to wiener and median filters, showing its
superiority.

Fig. 13. (a) Original image; (b) Additive white Gaussian noise �=16; (c)
Additive white Gaussian noise �=32; (d) Additive white Gaussian noise
�=64.

Fig. 14. First row is the output of bilateral filter and the second row output
of our new filter. Image noise are 16, 24 and 32 for first, second, and third
columns, respectively.

Our filter can delicately preserve corners and narrow
features which are more than 1 pixel wide (Figs. 12-13). The
filter cannot distinguish between two features that are as
close as one pixel if the noise level is high (variance of
additive noise is higher than 1.5 times that of the original
image).

E. Qualitative Smoothing Results
When performed on noiseless images, the new filter can

preserve the main edges and smooth each region
independently. In order to prevent smoothing across the
edges, here �f should not be large. Since the image’s noise
level is low, we do not need to use many pixels in our
weighting to achieve an acceptable result.

Figure 15 shows an image smoothed using the new filter.
Note that the main edges of the face are preserved while
some small features like tiny fluctuations in the stone are
smoothed.

(a)

(b)

(c)

Fig. 15. Persian soldier, Perspolis. Please note that the figure has undergone
histogram equalization so the details be more noticable, Iran; (a) Original;
(b) Smoothed image using bilateral filter with �c=2, �f=10 and window
size of 5; (c) Smoothed Image by the new filter with window size of 9, core
size of 5, �c=2, and �f=1.

F. Noise Cancellation
Our filter can also be used for noise cancellation. In

contrast to smoothing, for this purpose the value of �f should
be relatively high. In addition, for optimal results, we should
increase the threshold of region growing. This difference in

parameters is to make the region growing and smoothing
more robust to noise. If the region growing conditions are set
strict, we may exclude some noisy pixels from their original
region. Besides, by using more pixels in our averaging, we
will have a better diversity thus a better estimation of the
pixels’ original value. Some results of canceling the noise of
Lena’s image are brought in Figure 16. Each column
corresponds to a different noise level.

Looking at Figure 16, we can observe that when the noise
level is not very high, the new filter works better than the
bilateral filter. But in images with a high noise level, the new
filter cannot diminish the noise much more than bilateral and
its edge preserving properties are only slightly better. This is
because the region growing algorithm, though robust, does
not work well when the image is very noisy. Therefore, it is
recommended that highly noisy images are passed through
this filter more than once or the noise level is diminished to
some extent with another method prior to inputting the image
to our new filter.

V. CONCLUSIONS

The proposed filter performs intra-region smoothing
without mixing different regions. It also sharpens the
boundaries. In addition, it does not add bias to the image and
keeps the image mean intensity level intact, while reducing
the image variance as a result of smoothing.

ACKNOWLEDGMENT

The authors should like to appreciate the helpful
comments of anonymous reviewers that contributed to the
strength and accuracy of this paper.

Fig. 16. First row shows the input images. Second row is the output of bilateral filter with window size of 5, �d=2, and �r=10. Third row is the output of the
new filter with window size of 5 core size of 1, �d=2, and �f=10. The additive noise is Gaussian and in the first column its � is 8, in second column 16 and
in third column 32.

REFERENCES
[1] T. Boult, R. A. Melter, F. Skorina, and I. Stojmenovic. G-

neighbors.Proc. SPIE Conf. on Vision Geometry II, 96–109, 1993.
[2] R. T. Chin and C. L. Yeh. Quantitative evaluation of some

edgepreserving noise-smoothing techniques. CVGIP, 23:67–91, 1983.
[3] L. S. Davis and A. Rosenfeld. Noise cleaning by iterated local

averaging. IEEE Trans., SMC-8:705–710, 1978.
[4] R. E. Graham. Snow removal a noise-stripping process for picture

signals. IRE Trans., IT-8:129–144, 1961.
[5] N. Himayat and S.A. Kassam. Approximate performance analysis of

edge preserving filters. IEEE Trans., SP-41(9):2764–77, 1993.
[6] T. S. Huang, G. J. Yang, and G. Y. Tang. A fast two-dimensional

median filtering algorithm. IEEE Trans., ASSP-27(1):13–18, 1979.
[7] J. S. Lee. Digital image enhancement and noise filtering by use of

local statistics. IEEE Trans., PAMI-2(2):165–168, 1980.
[8] M. Nagao and T. Matsuyama. Edge preserving smoothing. CGIP,

9:394–407, 1979.
[9] P. M. Narendra. A separable median filter for image noise smoothing.

IEEE Trans., PAMI-3(1):20–29, 1981.
[10] K. J. Overton and T. E. Weymouth. A noise reducing preprocessing

algorithm. In Proc. IEEE Computer Science Conf. on Pattern
Recognition and Image Processing, 498–507, 1979.

[11] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Trans., PAMI-12(7):629–639, 1990.

[12] G. Ramponi. A rational edge-preserving smoother. In Proc. Int’l
Conf. on Image Processing, 1:151–154, 1995.

[13] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median
filters: a tutorial. IEEE Trans., CAS-II-43(3):155–192, 1996.

[14] C. Tomasi, and R. Manduchi, Bilateral filtering of gray and colored
images,. Proc. IEEE Intl. Conference on Computer Vision, pp. 836-
846, 1998. P.

[15] Choudhury and J.Tumblin, The Trilateral Filter for High Contrast
Images and Meshes, Eurographics Symposium on Rendering 2003,
pp. 1-11.

[16] H. G .Senel, R. A. Peters II, and B. Dawant, Topological Median
Filters, IEEE Trans. on image processing, vol. 10, No. 12, December
2001

[17] H. Soltanian-Zadeh, J. P. Windham, and A. E. Yagle, A
Multidimensional Nonlinear Edge-Preserving Filter for Magnetic
Resonance Image Restoration, IEEE Trans. on image processing, vol.
4, No. 2, February 1995

[18] P. Saint-Marc, J. S. Chen, and G. Medioni, Adaptive smoothing: A
general root for early vision, in Proc. IEEE Comput. Soc. Conf.
Computer .Vision Patt. Recogn., 1989, pp. 618424.

[19] F. Durand, and J. Dorsey, Fast bilateral filtering for the display of
high-dynamic range images,. ACM Transactions on Graphics, special
issue on Proc. of ACM SIGGRAPH 2002, San Antonio, Texas, vol.
21(3), pp. 249-256, 2002.

[20] M. Elad, .On the origin of bilateral filter and ways to improve it,.
IEEE Transaction Image Processing, vol. 11(10), pp. 1141-1151,
2002.

[21] M. J. Black, G. Sapiro, D. Marimont, and D. Heeger, Robust
anisotropic diffusion,. IEEE Transactions on Image Processing, vol.
7(3), pp. 421-432, 1998.

[22] Yin L., M. Gabbouj, and Y. Neuvo, Weighted median filters: a
tutorial, IEEE Trans. Circ. Syst. II: Analog Dig. Signal Processing.
vol. 43, no. 3, pp. 157-192, March 1996.

[23] Zadeh L., Fuzzy sets, Information and Control, vol. 8, pp. 338-353,
1965.

