
 
 

 

  

Abstract—In clinical problems, numerous factors are usually 
involved in a medical syndrome. New advances in medicine 
provide a broad range of diagnosis methods to cover all aspects 
of a disease. However, huge amounts of raw information may 
confuse clinicians and decrease decision accuracy. 
Computerized knowledge extraction is an active area of 
research in medical informatics. This paper suggests a new 
medical data mining approach using an advanced swarm 
intelligence data mining algorithm. Considering medical 
knowledge discovery difficulties, this approach addresses 
common issues such as missing value management and 
interactive rule extraction. Here, surgery candidate selection in 
temporal lobe epilepsy is the main target application. However, 
the general idea can be applied to other medical knowledge 
discovery problems. Experimental results show noticeable 
performance improvement in the final rule-set quality while the 
method is flexible and fast. 
 

I. INTRODUCTION 

N recent years, generation of huge amounts of medical 
data as well as health care systems’ need for accessing 

them easily and reliably have raised the interest in medical 
information systems and computer-aided diagnosis (CAD). 
These systems help physicians to improve their diagnosis 
quality and to select the most appropriate treatment, 
especially when there are many unknown parameters and 
large number of features, as it is common in neurological 
diseases. Although great progress has been made in the field 
of medical information processing, CAD systems have not 
been developed as fast as the other information systems due 
to certain problems.    

One of the most critical problems is limited acceptance of 
CAD systems by the clinicians. Common data classification 
methods have used intelligent approaches that look like 
black boxes to the clinicians. It is our understanding that 
acceptance of CAD systems depend on their transparent 
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designs and convincing evidence on the results called 
reasoning. The resulting rules describe relations between the 
available information and the system conclusion. Classical 
reasoning structures such as Bayesian Believe Networks 
(BBN) lack flexibility and are weak in extracting information 
from the raw data, i.e., data mining. However, recent 
innovations have introduced novel algorithms that 
outperform the classical methods are more likely to be 
accepted in the medical community. In particular, Swarm 
intelligence (SI) methods such as Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO) [1] have 
been recently applied to rule extraction and data mining 
problems. The dynamic essence of SI provides flexibility and 
robustness. With full control on the extracted rules, SI is a 
suitable approach to satisfy medical systems requirements.  

This paper focuses on the application of PSO in a medical 
decision support system. It explains usage of swarm 
intelligence in medical diagnosis systems especially for the 
problem of surgery candidate selection in temporal lobe 
epilepsy, which is used as a test-bench to compare different 
approaches. It is going through fast, flexible and interactive 
rule extraction. The paper starts with an overview of the 
state-of-the-art medical diagnosis and data mining systems 
and the current challenges. Browsing previous work, the 
failure point of each approach is discussed. In the next step, 
PSO and its application in data mining are described and 
finally the combined method and direct PSO methods are 
compared and drawback of each approach is discussed. All 
testing and evaluation studies have used the real dataset from 
the Human Brain Image Database System (HBIDS) 
developed at Henry Ford Health System. Experimental 
results show the power of the classical and improved 
versions of PSO compared with the traditional reasoning 
algorithms such as BBN and decision tree approaches such 
as C4.5 [2].  

 

II. KNOWLEDGE  DISCOVERY FROM DATABASE IN MEDICAL 
APPLICATIONS 

The overall process of knowledge discovery from 
database (KDD) is a multistage process. The main step in 
KDD, Data Mining (DM), is the most commonly used name 
to describe the computational efforts meant to process 
feature space information to obtain valuable high level 
knowledge, which must conform to three main requisites: 
accuracy, comprehensibility, and interest for the user [3]. 
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DM discovers patterns among database-stored information to 
support special user interest such as data classification. CAD 
systems are the primary areas of interest in data mining [3]. 
Figure 1 shows the general diagram of a computerized 
decision system.   

Designers of computer-based diagnosis systems often 
view the physician's primary decision-making task as a 
differential diagnosis. This term refers to a type of analytical 
task wherein the decision maker is confronted with a fixed 
set of diagnostic alternatives.  

Over the past two decades, a large number of specialized 
procedures have been developed to assist physician in 
differential diagnosis of a variety of well defined clinical 
problems. These have been extensively reported in the 
medical and computing literature. In addition, algorithms to 
deal with a host of common medical problems, expressed by 
means of detailed flowcharts, have increasingly found their 
way into the clinical application.  

 

 
Fig. 1.  Knowledge Discovery Diagram for Medical Data. 

 
Many different techniques have been used in structuring 

these clinical algorithms. In some cases, special programs 
have been formulated to capture the logic involved in the 
workup of particular classes of clinical problems. In other 
cases, generalized procedures have been adopted that are 
tailored to a particular application by specification of certain 
parameters; for example, many diagnostic programs have 
been developed to use the normative models of statistical 

decision theory. In some complex diagnosis tasks too many 
parameters such as cancer staging and neurological disease, 
medical diagnosis systems evolve rapidly. Evaluation studies 
frequently show that these programs generally perform as 
well as experienced clinicians in their respective domains, 
and somewhat better than the non-specialist. It is interesting, 
therefore, to speculate on the reason that such programs have 
not had greater impact on the practice of medicine [4]. 

Resistance in the medical community is sometimes 
attributed to the natural conservatism of physicians or to 
their sense of being threatened by the prospect of 
replacement by machines. Some have argued that this can be 
resolved only on the basis of education and training, and that 
the next generation will be more comfortable with computer-
based decision aids as these become routinely introduced 
into the medical community.  

III. EPILEPSY SURGERY CANDIDATE SELECTION PROBLEM 

This section describes the main target problem of this 
article, epilepsy surgery candidate selection. In the 
following, we will describe the importance of the problem 
and the challenges we faces to find a solution. The problem 
is new in the area of soft computing but still can be 
considered as a prototype of common medical diagnosis 
problems such as breast cancer staging or leukemia genome 
expression.  

A. Problem Statement 
Epilepsy is recognized as an organic process of the brain. 

More formally, epilepsy is an occasional, excessive, and 
disorderly discharge of nerve tissue, seizure, which 
sometimes can be detected by electroencephalographic 
(EEG) recording. It is a complex symptom caused by a 
variety of pathological processes that result in treatment 
selection difficulties. Pharmacotherapy or surgical treatments 
are the neurologist alternatives. Optimal treatment selection 
in the first step may change the patient’s life. Temporal lobe 
epilepsy is one of the most common types of known 
epilepsy. The main origin of seizures in this type is located 
in the hippocampus. 

Despite optimal pharmacotherapy, about 20–30% of the 
patients do not become seizure-free [5]. For some of these 
patients, surgery is a therapeutic option. Success of resective 
epilepsy surgery increased from 43% to 85% during the 
period 1986–1999 [6]. Data from multiple sources suggest 
that 55–70% of patients undergoing temporal resection and 
30–50% of patient undergoing extra-temporal resection 
become completely seizure-free [7]. A recent prospective 
randomized controlled trial of surgery for temporal lobe 
epilepsy showed that 58% of patients randomized to surgery 
became seizure-free compared to 8% of the medical group 
[7].  

Surgery is considered a valuable option for medically 
intractable epilepsy even in the absence of a proven drug 
resistance. In addition, surgical outcome may be greatly 



 
 

 

influenced by the presence of selected prognostic indicators 
[8, 9]. However, there are still uncertainties on who are the 
best surgical candidates, i.e., those who most likely will 
present good surgical outcome.  

In a recent narrative literature review of temporal 
resections, good surgical outcome was associated with a 
number of factors (hippocampal sclerosis, anterior temporal 
localization of interictal epileptiform activity, absence of 
preoperative generalized seizures, and absence of seizures in 
the first post-operative week) [5]. However, the published 
results were frequently confusing and contradictory, thus 
preventing inferences for clinical practice. Methodological 
issues (e.g., sample size, selection criteria, and methods of 
analysis) were indicated as the most likely explanation of the 
conflicting literature reports [9]. For this reason, a 
quantitative review of the available literature has been 
undertaken in [9] to assess the overall outcome of the 
epilepsy surgery and to identify the factors better correlating 
to seizure outcome. The aim of the study was to perform a 
meta-analysis of the results of published observational 
studies and assess the prognostic significance of the selected 
variables outlining the characteristics of the clinical 
condition, the correlations between the epileptogenic and 
functional lesion, and the type of surgical procedure. 

B. Database for Epilepsy Patients 
Human brain image database system (HBIDS) is under 

development for epilepsy patients at Henry Ford Health 
System, Detroit, MI [10, 11]. It will examine surgical 
candidacy among temporal lobe epilepsy patients based on 
their brain images and other data modalities. Moreover, it 
can discover relatively weak correlations between symptoms, 
medical history, treatment planning, outcome of the epilepsy 
surgery, and brain images. Its data include MRI and SPECT 
along with patient’s personal and medical information and 
EEG study [10]. The data is de-identified according to 
HIPPA regulations [11]. 

For the first phase of the EEG study, the non-visual 
feature extractor is an expert or specialist. The experts do 
this routinely in the clinic based on well-defined standards. 
For un-structured text information, the wrapper is the expert 
or trained nurse. The structured data such as patient’s 
personal information do not need to be analyzed by the 
wrapper, so they are directly stored in the database [11].   

 

C. Candidate Selection Problem 
Most of data mining methods are designed to work on a 

huge amount of data. Thus, KDD problem with small sample 
size does not broadly browse in the data mining literature. 
The most successful approach is to add classification or 
modeling stage before the rule extraction. A smart classifier 
can recover the patterns inside dataset and minder can 
recover the classification rules. In this approach, thoughtful 
selection of both steps is critical. 

Candidate selection in epilepsy, more generally in medical 

diagnosis, is a hard pattern recognition problem. As well as 
many current bioinformatics problems, the main challenge in 
candidate selection problem is to find an optimal point in a 
very large-dimensional data-space with few samples. As an 
example of other problems with the same challenge, 
functional gene classification problem [12] has a reduced 
feature space with 200 dimensions while usually less than 50 
samples are available in each case. Our epilepsy problem has 
a 40-dimensional space and around 35 samples.  Common 
soft computing tools such as neural networks are efficiently 
applicable only on large datasets. The longer feature vector, 
the larger database is required. Overtraining problem is 
always a threat for small samples machine learning. On the 
other hand, conventional feature space dimension reduction 
algorithms such as principle component analysis (PCA) are 
based on statistical computations that can not be applied to 
small number of samples. Other difficulties such as missing 
data, large variety of data types, feature disturbances, and 
prior knowledge make the problem more complicated. 
Furthermore, knowledge recovery in this problem is not 
straightforward.  

IV. KNOWLEDGE DISCOVERY ALGORITHMS 

Many KDD algorithms have been proposed in the 
literature. However, most of them do not satisfy limitations 
of medical applications and thus medical data mining is still 
a hot research topic.  The first common KDD algorithm class 
is based on decision tree classifiers. Decision trees are a 
standard tool in data mining, and many are available in 
packages such as C4.5 [13].  

Another alternative for a popular classifier is Bayesian 
network [14, 15]. Here, all prior assumptions are made 
explicit and the weights and hyper plane parameters are 
determined by applying the Bayes theorem to map the prior 
assumptions into posterior knowledge after having observed 
the training data. 

V. SOFT COMPUTING FOR KNOWLEDGE DISCOVERY 

In recent years, various soft computing methodologies 
have been applied to address data mining [16]. Generally, 
there is no universal best data mining algorithm. Choosing 
appropriate data mining algorithm utterly depends on the 
application.  Social and SI algorithms are well-known 
alternatives of soft computing tools that can be used for 
retrieving information from raw data [17]. Distributed 
Genetic Algorithm, ACO and PSO are the most commonly 
used evolutionary algorithms in this domain. The most 
interesting contribution of these methods is in flexible rule 
extraction where we are facing with incomplete and 
inaccurate datasets [18]. 



 
 

 

 Fig. 2.  Rectangular Tree Based Rule Set. 

A. Rule Extraction 
According to previous discussions, finding a rule-based 

classifier and reasons behind the decision making process are 
essential parts of CAD systems. Also, they are key parts of 
KDD. This section discusses the mathematical modeling of 
rule extraction process and application of PSO to find the 
rule set describing a support vector machine classifier. 

Assume S is the search space and �i is a data point inside 
S and yi=V(�i) is its class. A classifier is define by yi1= 
U(�i). The target of rule extraction is to find a rule set RU

1..n 
that describes the U classifier. 

Each rule is an “IF-THEN” statement with two clauses. In 
the simplest case, the former clause is a condition on the 
search space and the latter clause is the target class. The 
structure of these two clauses is called rule set grammar 
limiting phrases in the rule clauses. The simpler the 
grammar, the more comprehensive statements can be 
retrieved. Rectangular grammar limits the IF-clause to 
intervals of each individual feature. Fig. 6 shows an example 
of the rectangular rules. Decision tree is another alternative 
of rule set topology (Fig. 2) which is quite common in 
medical applications because of better interpretability and 
higher searching speed. In this structure, the IF-part may also 
include another rule in addition to intervals but the number 
of intervals is limited.   

B. Rule-Set Evaluation 
The value of a rule is evaluated using different parameters: 
− Accuracy: percentage of data points correctly classified. 

# : ( ) ( )
#R

V R TP TN
A

TP TN FP FN
θ θ θ

θ
= += =

+ + +
 (1) 

 
− Quality: obtained from the ROC curve by: 

sensitivity · specificity
( ) ( )R

TP TN
Q

TP FN TP FN
⋅= =

+ ⋅ +
 

(2) 

 

− Coverage: percentage CR of specific class data points that 
are covered by the rule set. 

− Simplicity: the number of terms in the rule clauses and the 
number of intervals on each term condition representation 
(SR). Generally, a very complex rule can describe any 
classifier and achieve very high Coverage and Accuracy 
spontaneously. Comprehensibility as a critical parameter 
in medical data mining is measured by this term. The 
number of rules in a rule set, and the number of terms in a 
rule represent the complexity phenomena. Simplicity is 
defined as 1/Complexity. 

− Rule interference: Adding to the individual rule 
evaluating parameters, the final rule set is admirable when 
it can cover the entire search space while the conflict 
among rules is kept as low as possible. Interference 
parameter (IR) is particularly considered for reasoning 
process and reliable decision making. 
Finally, the rule set evaluation is Eval(R) = �AR + �CR + 

�SR - �IR. The accuracy measure can be replaced by the 
quality when the trade-off between sensitivity and specificity 
is highly interested. Finding the best rule set is a complex 
multi-objective process.  

C.  Swarm Intelligence Rule Extraction 
Previous work in the literature shows power of PSO in 

solving rule extraction problems in medical diagnosis 
systems. Many recommended modifications of PSO for 
providing a flexible approach to address common difficulties 
of medical information retrieval from databases. Here, we 
present hybrid approaches to overcome problems presented 
in earlier sections.  

ACO and ant miners is the first swarm intelligent data 
mining algorithm. The purpose of their algorithm, Ant-Miner 
is to use ants to create rules describing an underlying data 
set. The overall approach of Ant-Miner is a separate-and-
conquer one as same as C4.5 [17]. It starts with a full 
training set, creates a best rule that covers a subset of the 
training data, adds the best rule to its discovered rule list, 
removes the instances covered by the rule from the training 
data, and starts again with a reduced training set. This goes 
on until only a few instances are left in the training data 
(fewer than max number allowed) or the fitness function 
meets the target, at which point a default rule is created to 
cover remaining instances. Once an ant has stopped building 
a rule antecedent a rule consequent is chosen. This is done 
by assigning to the rule consequent the class label of the 
majority class among the instances covered by the built rule 
antecedent. The rule is then pruned in order to improve its 
quality and comprehensibility. The basic idea is to iteratively 
remove one term at a time from the rule while this process 
improves the rule quality as defined by a fitness function. In 
an iteration, each term in turn is temporarily removed from 
the rule antecedent, a new rule consequent is assigned, and 
the rule quality is evaluated. At the end of the iteration, the 
term that has actually been removed is the one that improves 
the rule quality the most.      



 
 

 

VI. PARTICLE SWARM OPTIMIZATION FOR RULE INDICATION 

Rule discovery process can be done using a Particle 
Swarm Intelligence Algorithm. PSO imitates the intelligent 
behavior of beings as part of a group to experience sharing in 
a society. In contrast to conventional learning algorithms 
with individual reaction to environment or searching space, 
PSO is based on adaptive social behaviors. The basic idea of 
the PSO model is constructed on three ideas:  evaluation, 
comparison and imitation. Evaluation is the kernel part of 
any intelligent algorithm measuring quality of the result in 
the environment and usefulness inside the community. Some 
metrics are defined to represent the particle superiority. This 
evaluation is pointless without well-defined comparison 
process which is a sequential relationship in the particle 
space. The improvement of particles is made by imitating 
best solution up to now. Looking to best solution in the 
neighborhood, a particle decides where to move in the next 
step. There are many alternatives for implementation of 
neighborhood and distance between particle concepts.   

A. PSO Algorithm 
PSO is a set of individual agents simply searching for an 

optimal point in their neighborhood. The movement of 
agents depends on behavior of other agents in the vicinity 
and the best visited nodes. During PSO training particle’s 
best met position (BPi) and the best solution met by 
neighbors (BPNi) is updated. A position vector and a velocity 
vector in the feature space are assigned to each particle. The 
standard PSO parameters update formulation is: 

1
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( ) ( 1) [ ( 1)]

                       [ ( 1)]

( ) ( 1) ( )

i i i i i

i Ni i

i i i

t v t BP x t
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In the new version of PSO, a weight term is applied to 

prevent divergence of the velocity vector:  

1
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                           [ ( 1)])
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For a more general definition of the distance aspect [16], a 

more general form of position update equation is: 
1

2

( ) ( ( 1) [ ( , ( 1))]

                           [ ( , ( 1))])
i i i i i

i Ni i

t v t Dis BP x t

Dis BP x t
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General optimization algorithm is summarized in Table 1.            

 
Table 1. PSO pseudo-code. 
Assume K particles 
Distribute particles in the searching area 
 
While (Fitness < TARGET_FITNESS && Epoch < 

MAX_EPOCH) 
{ 
evaluateTotalFitness(); 

For any particle p 
{ 
  Evaluate(p); 
  UpdateBestPosition(p); 
  UpdateNeighborhoodList(p); 
  UpdateBestPositionInNeighborhood(p); 
 
  UpdatePositionInAllDimensions(p); 
 
} 
} 

B. PSO for Database Rule Extraction 
Rule extraction process usually contains two stages: rule 

set generation and pruning. Rule generation is a forward 
selection algorithm adding new rules to current rule-set. In 
contract, pruning or cleaning process is a backward 
elimination algorithm omitting extra rules form rule-set. PSO 
could efficiently apply in the rule generation process. While 
PSO is a strong optimization algorithm in the large search 
space, it could obtain rule-set with maximum fitness 
function, no mater how complex it is.  Sousa et al [17] 
proposed a particle swarm based data mining algorithm. 
Comparing different PSO implementations with C4.5 and 
other evolutionary algorithms, they concluded that PSO can 
obtain competitive results against other alternative data 
mining algorithms, although it needs a bit more 
computational effort.     

C. Neighborhood Structure Effect on Rule Set 
Neighborhood and social networks phenomena are new 

issues proposed in swarm intelligence by PSO. The 
influence of different social network structures on the 
performance of PSO has been studied arguing that a 
manipulation affecting the topological distance among 
particles might affect the rate and degree to which 
individuals are attracted towards a particular solution. 
Four different types of neighborhood topologies have been 
proposed in the literature. In circles structure, each 
individual is connected to a number of its immediate 
neighbors. In wheels structure, one individual is 
connected to all others, and these are connected only to 
that one. In star neighborhood, every individual is 
connected to every other individual. Finally, random 
topology is used for some individuals and random 
symmetrical connections are assigned between pairs of 
individuals. 

Structure of the neighborhood may affect the data mining 
process. Also, the rule-set fitness and convergence depend 
on the neighborhood structure. Experimental results have 
shown that the neighborhood topology of the particle swarm 
has a significant effect on its ability in finding the optimal 
rules. Best pattern of connectivity among the particles 
depends on the fitness function. In the single rule extraction, 
the wheel structure improves the convergence speed of the 



 
 

 

data mining process. However, starting with a random 
neighborhood is a better choice for multi-rule extraction.    

D. Decision Tree Rule Indication Using Structured PSO 
Decision trees are powerful classification structures. 

Standard techniques such as C4.5 can produce structured 
rules for the decision tree. These techniques follow divide 
and conquer strategy on the data set to obtain two subsets. 
The algorithm is applied to subsets recursively.  Each 
intermediate node tests a feature. Following the path between 
leafs and root could be taken as a simple rectangular rule. 
The PSO neighborhood concept can be designed to extract 
tree based rules directly. In this structure, each agent has a 
single decision node. Neighborhood definition could force 
tree rule indication. Adjacent agents are defined as similar 
limitations on all features but one. The best point in the 
vicinity is the solution that satisfies neighborhood condition 
while having lowest limitation. From the decision tree point 
of view, the best node in the neighborhood is the root of its 
sub-tree and of course the best solution is the decision tree 
root. The final solution is presented by all agents together. 
Also, the fitness function in this application is different from 
the original target function and depends on the size of the 
rule-set as well as the accuracy parameters as described in 
the previous chapter.  

E. Rule Injection and Rejection 
The clinicians are involved in the rule-set construction by 

rejecting an existing rule inside the database or injecting new 
rules into the dataset. After the injection or rejection process, 
other rules inside the database may be affected. In the PSO 
algorithm, there are two absorption points, best local 
solution and best global solution. New injection rule could 
model as a new absorption point. Injected rule may affect 
other solutions in the vicinity. However, the training process 
is not applied to this rule. On the other hand, rejected rules 
model penalty terms in the fitness function. By adjusting 
mandatory conditions on the rules, the target function 
changes to produce more realistic rule-set.      

VII. EXPERIMENTAL RESULTS 

A. Classifier Evaluation 
Medical classification accuracy studies often yield 

continuous data based on predictive models for treatment 
outcomes. Evaluation of the classifier efficiency is computed 
with regard to the true or false classification results. True 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) values are the basic evaluation measures 
for a classifier. The sensitivity and specificity of a diagnostic 
test depends on more than just the "quality" of the test -- they 
also depend on the definition of what constitutes an 
abnormal test. A popular method for evaluating the 
performance of a diagnostic test is the receiver operating 
characteristic (ROC) curve analysis [19]. This is a plot of the 
true positive rate against the false positive rate for the 

different possible cut-points of the classifier. Each point of 
the ROC curve is obtained by finding the true positive rate 
when the decision threshold is selected based on a specific 
false alarm rate.   

The area under the ROC curve represents accuracy of a 
classifier. In medical problems, false alarm rate as well as 
false rejection rate should be lower than pre-specified limits. 
The trade off between false alarm rate and false rejection rate 
is problem specific. In our surgery decision-making problem, 
both rates must be considered. However, false alarm rate 
(doing surgery for a patient who does not need it) is more 
likely to be of concern. 

B. Cross Validation Training 
Because of a very low number of samples, complete 

separation of the test and train sets is not appropriate. Cross-
validation is used to reuse train information in test process to 
measure the generalization error [20]. Assume 

1 1 2 2{( , ), ( , ),..., ( , )}l lF y y yθ θ θ=
� � �

 is a set with 

cardinality of l and an algorithm maps F to VF in the results 
space. We would like to measure the generalization error. 
Cross-validation uses l-p samples to find the function of Vl-p 
where the generalization error is measured by: 

1 ( ( ), )
i p

l p i i
x F

e Eval V yθ−
∈

= �
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This process is repeated M times and the final error 
expectation is:  

                       
1

1ˆ
M

i
i

e e
M =

= �  (7) 

which is expected to be the generalization error of Vl. When 
p=1, it can be shown that the generalization error estimation 
is unbiased. Although this validation is time consuming, it 
significantly increases the power of the training process. For 
most efficient use of the data, training and test sets are not 
separated. In each training epoch, 4/5 of the patients are 
randomly selected to train the classifier. The rest of the 
patients (1/5) are used to test. The final classifier is the 
average of many training processes. This training strategy 
provides maximum database usage efficiency at the cost of 
higher computational complexity. In this experiment, more 
than 50 train-test sets are used. The training process 
terminates when the classifier’s mean squared error of the 
test-set increases in the last two epochs.  

C. Performance 
Here, we present experimental results of comparison of the 

four algorithms: structured decision tree training as the 
representative of classic mining algorithms, Ant colony 
miner as an evolutionary algorithm pioneer in medical data 
mining, previously proposed PSO database miner, and the 
hybrid approach. Common train and test datasets have been 



 
 

 

used for all data miners. Tables 2 and 3 compare 
performance of different algorithms.  

The performance of data mining algorithms is compared 
from different points of view. Performance of the generated 
rule sets has been compared using evaluation functions 
proposed in the previous parts. Relatively, C4.5 generates 
the most accurate solution. Actually, it misses very few test 
cases but the overall score of this approach is quit low. 
Having a close look at the simplicity metric and the number 
of rules, it is obvious that the high accuracy of C4.5 is the 
result of a more complex rule set and lower generalization.  

C4.5 is a very fast algorithm compared with the SI 
algorithm due to its iterative and divide/conquer strategy, 
thus it cannot be fairly compared with the evolutionary data 
miners (Fig. 4). It is especially designed to handle huge 
amount of data, thus, we expect a very fast convergence. 
Among the evolutionary algorithms, PSO shows a very good 
convergence speed. Simulations show that even with an 
additional classification learning process, PSO is faster than 
the conventional ACO miner while having the same 
performance. 

Altogether, C4.5 shows to be a powerful method but the 
resulting rule is too complex to use. Fast convergence of 
C4.5 is impressive but for small databases, it is not 
recommended. The PSO applied after the classification 
process outperforms the direct PSO knowledge recovery 
from the database but it is comparable with ACO in some 
aspects. Generally, simulation results show that the proposed 
hybrid process has the best overall evaluation while is still 
somewhat faster than the previous evolutionary algorithms. 
Also, a bit more memory usage can count as a drawback of 
the new approach compared to ACO and simple PSO. Effect 
of rule injection and rejection process is shown in Fig. 6. 
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Fig. 3.  Receiver operating characteristic (ROC) curves for 

different algorithms. 

VIII. CONCLUSION 

We discussed an integration of a classifier and PSO rule 
extraction methods to mine patient data for surgery candidate 
selection in epilepsy. We have demonstrated that support 
vector machines can accurately classify patients into suitable 

and inappropriate candidates for surgery. Among the 
techniques we examined, the regularized classifier using a 
radial basis kernel function provided the best performance.     
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Fig. 4.  Effect of the number of sample points on the 

convergence time. 
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Fig. 5.  Effect of the target fitness function on the 

convergence time. 
 

Table 2. Overall performance of different data miners. 

 
Number of 

Total Terms 
in Rules 

Accurac
y (%) 

Overall 
Evaluation     

(%) 
C4.5 (J48) 9 92.9 81.7 

ACO 8 76.5 88.3 
PSO on Database 10 87.7 84.2 

PSO on a Regularized 
Classifier 6 89.1 91.7 

Table 3. Classification parameters for the rule sets obtained. 

 Sensitivity 
(%) 

Specificity 
(%) 

Simplicity 
(%) 

C4.5 (J48) 0.8421 0.9911 64.7 
ACO 0.9521 0.9821 74.2 
PSO on Database 0.8192 0.9541 53.8 
PSO on a Regularized 
Classifier 

0.9821 0.9781 87.5 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  a) Rules extracted in the decision tree form, b) rule 
rejection (R22), c) Rule injection. 

 
 


