
 
 

 

  

Abstract— Making use of neighborhood time series is an 
effective way of noise reduction in fMRI data. However the 
conventional averaging methods blur activated areas. In this 
paper, a filter with adaptive kernel is designed such that its 
kernel size and direction are defined at each voxel. First, for 
finding the optimum size of kernel, a linear combination of 
some isotropic Gaussian filters with different variances is used, 
and optimum value of variance is specified. Then, the 
appropriate kernel direction is determined by a linear 
combination of some anisotropic basic filters with various 
directions. The weights of these linear combinations can be 
calculated by using the restricted canonical correlation method. 
The proposed method is compared with a similar method based 
on the steerable filters ([7]) and the results show that the 
proposed method improves the ROC curve and prohibits false 
spread of the activation areas. 
 

Index Terms— fMRI- Averaging models- isotropic filters- 
ROC- steerable filters. 

I. INTRODUCTION 
unctional Magnetic Resonance Imaging uses the BOLD  
(Blood Oxygenation Level-Dependent) effect for 

localizing activated brain areas.  
To reach this end, some statistical analysis must be 

performed on MRI images acquired during a cognitive task. 
T-test and cross-correlation analysis are two conventional 
detection methods [1]. In T-test, while the noise is assumed 
to be white and Gaussian it may not be white and Gaussian 
generally [2]. Moreover, these methods use each voxel's 
signal separately and ignore spatial correlation of data. 
Several researches were reported in which spatial 
information of data were taken into account. 

Friman et al. [3] proposed a method based on canonical 
correlation that maximizes the cross-correlation between a 
linear combination of time series of a neighborhood and a 
linear combination of a signal subspace bases.  

Freeman et al. proposed a method for designing arbitrary 
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orientation filters from linear combinations of some basic 
filters. These basic filters are made by rotating a main filter 
to different angles. In this manner, they made a steerable 
filter [4]. 

Sole et al. proposed a method which progressively 
enhances the temporal signal by means of adaptive 
anisotropic spatial averaging. This averaging is based on a 
new metric for measuring the similarity of signals 
corresponding to various voxels [5]. 

Hossein-Zadeh et al. proposed a method that maximizes a 
test statistic, designed to indicate the presence of activation. 
This statistic is the ratio of the filtered time series energy in 
a signal subspace to the energy of the residuals. This 
approach equates the spatial filter coefficients to the 
elements of an eigenvector corresponding to the largest 
eigenvalue of a specific matrix, while the largest eigenvalue 
itself becomes the maximum energy ratio. The distribution 
of this statistic under the null hypothesis is derived by a 
nonparametric permutation technique in the wavelet domain 
[6]. 

Also Friman et al. used the linear combination of an 
isotropic Gaussian filter and three anisotropic Gaussian 
filters to produce an optimum spatial filter. To make the 
designed filter steerable, two of the anisotropic filters are 
rotated 60 and 120 degrees, respectively. The variance of the 
initial Gaussian filter is assumed to be constant for all 
voxels. Also, a linear combination of signal subspace bases 
is used as the reference signal for activation detection. 
Finally the cross-correlation between these two linear 
combinations is maximized by restricted canonical 
correlation method [7]. A limitation of this method is its 
assumption for the variance of main Gaussian filter. Because 
the variance is assumed to be constant for all voxels, the size 
of the filter can not change according to each voxel's signal. 
This may cause false spread of the active regions to the 
surrounding inactive voxels.  

In this paper, we are going to design a filter with adaptive 
size and direction, for each voxel to produce maximum 
correlation between a linear combination of the filtered 
signals of the neighbor voxels and the stimulation pattern of 
activation. This increases the signal content and reduces the 
noise at each voxel. Therefore, the signal to noise and the 
performance of activation detection will be improved 
without false spread of the activation area. 

In our proposed method, first the optimum variance for 
the initial Gaussian filter in [7] was determined 
automatically. So, the mentioned limitation in [7] will be 
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avoided. Then the Taylor expansion was used to make the 
filter steerable. In this manner, the spatial filter will be able 
to change in size and direction according to the size of the 
activation area and also the active voxel's signal can not 
affect the neighboring inactive voxels.  

II. THEORY 
As mentioned previously, the goal of this paper is to 

design a filter that its size and direction can be changed 
according to the spatial contents of data, and with the aim of 
enhancing the performance of activation detection.  

A 2D isotropic Gaussian filter and some 2D anisotropic 
Gaussian filters are considered. The different anisotropic 
filters are made by rotating a specific anisotropic filter to 
different angles, via;  
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Where ),,;,( ασσ
yx

yx
aniso

f defines the anisotropic 

filter and );,( σyx
iso

f defines the isotropic filter, also α is 

the rotation angle. 
Now a linear combination of one isotropic filter and N-1 

anisotropic filters is made as the following: 
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The observed data can be filtered by this filter via: 
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Where I(x, y, t) is the observed signal and X defines a 
matrix containing the filtered signals. 

According to the recent equation, the data can first be 
filtered using each base filter (isotropic and anisotropic 

filters) and then the desired linear combination can be made 
using these filtered signals. Optimum values of 
weights

i
w will be derived later by CCA. 

Suppose that a set of temporal bases for fMRI signal 
(signal subspace) are put in the rows of matrix Y. Friman et 
al. in [7] proposed a method based on PCA for deriving 
these bases. Now the unknown weight vectors xW  and yW  

must be derived such that they are positive and the linear 
combination of the filtered signals has maximum correlation 
with a linear combination of temporal bases in Y.   

The correlation coefficient between XWx  and YWy  is 

calculated as the following: 
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Also to ensure that the unknown weight vectors xW  and 

yW  are positive, restricted canonical correlation method 

must be used [8]. Thus, for each voxel we are going to find 

unknown parameters
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As can be inferred, the parameters (isotropic filter's 
variance and the variances and orientations of the 
anisotropic filters) must be adjusted in such a way that is 
able to maximize the correlation coefficient.  

Regarding many parameters in the above problem, the 
numerical optimization will be very time consuming. To 
overcome this, we first find the optimum variance (σ ), and 
then we find the rest of remaining parameters in another 
procedure.  

A. Deriving the optimum values for iσ ’s 

In the first step, the kernels of M different Gaussian 
spatial filters with M different variances are built as the 
following: 
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The linear combination of the filtered data can be 
obtained as the following: 
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Now the maximum correlation coefficient between 
XWx  and YWy , and also xW  and yW  are calculated 

using the restricted canonical correlation method. Then the 
filter that has the largest coefficient in xW  is selected as the 

initial isotropic filter and its variance is considered as 2σ  
(in Eq. (7)). This isotropic Gaussian filter is known as the 
initial filter. 

B. Definition of the anisotropic filters 
The second step, based on the method proposed in [7], 

makes the filter steerable. First, three weight filters are built 
from the initial isotropic filter, an isotropic ),( yxhiso  and 

two anisotropic 2,1),,( =iyxhi . These weight filters are 
used to build the final isotropic and anisotropic filters by 
multiplying them with the initial isotropic filter (Eq. (12)). 

),( yxhiso  has a similar shape to the initial filter and its 
variance is: 

( )1010;2.2 <<= K
Mf

K
isoh

σσ  

Where Mf denotes the initial isotropic filter and K is the 
magnitude coefficient. The effect of choosing K on 
activation detection will be discussed later. To compensate 
the changes in the variance around its initial value, the 
Taylor expansion of ),( yxhiso around this initial variance is 
constructed. 

To reduce the number of parameters in Eq. (7), two 
oriented filters are used, and their orientation is considered 
to be fixed. In this article two anisotropic filters are rotated 
45 and 135 degrees with respect to X axis. So, these two 
anisotropic filters can be defined as: 
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Finally the basic spatial filters can be defined as the 
following, 
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Where ),( yx
i

f  defines the anisotropic filter. Now the 

linear combination of these three basic filters can make a 
spatial filter that is steerable and can change around the 
optimum variance. 

To accelerate the activation detection algorithm, some 
preprocessing operations must be performed to reduce the 
number of voxels that must be processed. Intracerebral 
voxels are separated using a mask. Then correlation 
coefficient between each voxel and the stimulation pattern is 
calculated separately and then the voxels with the 
correlation coefficients higher than a predefined threshold 
are selected. The threshold must be such that all active 
voxels determined as active. In other words, this threshold 
must be considered relatively low. In our experiments this 
threshold is equaled to 0.1. 

C. Experimental and simulated data 
Simulated data are used for evaluating the proposed 

method including two kinds of block design and event 
related data. To reach this goal, a series of fMRI data are 
acquired from a subject using a 1.5-Tesla scanner in resting-
state. Data corresponding to a slice (with FOV=64×64) in 
252 different times are extracted and the simulated 
activation signal is added to the predefined locations as 
shown in Fig.1. The stimulation pattern was selected as a 
boxcar function with five 150 s periods. Each period 
consisted of 60 s of ON condition followed by 90 s of OFF or 
baseline condition. 

 

 
 

Fig.1. Spatial pattern of activation in the simulated dataset. 
 
In the other set of data, the activation signals are simulated 
for an event-related pattern activation including 44 
stimulation pulse which lies between scans 0 and 252 
randomly.  
Experimental fMRI data analyzed in this article are acquired 
from a healthy volunteer using a 1.5-tesla scanner. Two 
different kinds of pictures are shown to the subject. The 
subject must click the mouse button for specific kind of 
pictures. These data include 16 slices of size 64×64 and are 
gathered for 124 different times (with TR=2.68s). 
 



 
 

 

III. RESULTS 
The proposed method is applied to the block design and 

event related simulated data and the results are compared 
with that of steerable filters method in [7]. Since in the 
simulated data, spatial pattern of activation is known, the 
numbers of false detections and true detections can be 
determined after thresholding, thus an ROC curve is plotted 
for each method. Fig.2 shows two ROC curves resulted from 
two methods: 

 

 
 

Fig.2. The ROC curves for two methods applied to block design data 
with k = 0.5. It can be seen that our proposed method (solid line) has 
better result. The initial variance for isotropic filter is assumed to be 1 

 

 
 

Fig.3. The ROC curves for two methods applied to event related data 
with k = 0.5. It can be seen that our proposed method (solid line) has 
better result. The initial variance for isotropic filter is assumed to be 1 

 

    
 

Fig.4. The results of our proposed method applied to experimental 
data with K = 0.5 and threshold = 0.25 (right) and the results of the 
method proposed in [7], applied to experimental data with K = 0.5 
and threshold = 0.28 (left). The initial variance for isotropic filter is 
assumed to be 1. 
 
Two methods are applied to the experimental data. The 

results of activation detection areas for two methods are 
shown in Fig.4. As mentioned, our experimental data are 
visual stimulation data, so, it is rational that the posterior 
part of the brain becomes active. 

According to the ROC curves, for two methods, the result 
of our proposed method is considerably better than the 
results of the steerable filters method in [7]. 

 

  

    
 

Fig.5. The results of our proposed method applied to block design 
(top row) and event related (bottom row) data with K = 0.5 and 
threshold = 0.25 (right column) and the results of the proposed 
method in [7], applied to block design and event related data with 
K = 0.5 and threshold = 0.3 (left column), the initial variance for 
isotropic filter is assumed to be 1. 
 
In Fig.5 detected activation areas are demonstrated for 

block design and event related data for two methods. It can 
be seen that our proposed method shows better results 
compared to the results of the other methods, for both block 
design and event related data. 

A. Sensitivity 
As defined in the previous section, choosing appropriate 

value for the coefficient K defined in Eq. (10), can affect the 
final results of our method. In this section, the effects of this 
parameter on ROC curve will be examined for various 
values and then this effect will be compared with the method 
proposed in [7].  



 
 

 

 
 

Fig.6. ROC curves of the proposed method in [7] for various values 
of K. Solid line k = 0.7, Dot line k = 0.4, Dash line k = 0.3. 

 
In the method proposed in [7], an isotropic filter with 

predefined variance is used to make a steerable filter. This 
constant variance increases the sensitivity of this method to 
different values of K. This problem is examined by 
assigning various values to K and measuring changes in the 
obtained ROC curves. Fig.6 shows ROC curves for various 
values of K.  

 

 
 

Fig.7. ROC curves of our proposed method for various values of K. 
Solid line k = 0.7, Dot line k = 0.4, Dash line k = 0.3. 

 
For measuring our proposed method’s sensitivity, various 

values are assigned to K and then ROC curves are obtained 
for each value. These ROC curves are demonstrated in 
Fig.7. If two sets of curves in Fig.6 and Fig.7 are compared 
to each other, it can be seen that the deviation of ROC 
curves in Fig.7 is less than that of ROC curves in Fig.6. So, 
our method is less sensitive to the changes in K than the 
proposed method in [7].  

IV. CONCLUSION 
In the proposed method, the filter size can change 

adaptively in addition to its orientation. This makes the 
designed filter more compatible with various spatial pattern 
of activation. Therefore more kinds of spatial pattern of 
activation can be detected correctly. In the previous method, 
based on steerable filters, it is difficult to find an optimum 
filter size that affects the final results and activation 
detection area. But in this method this optimum filter size is 
determined automatically according to the observed signals. 
In addition, the results of the experiments show that the 
proposed method is less sensitive to the changes in K 
parameter defined in Eq. (10). On the other hand, this 
method is only performed on some voxels placed in the 
candidate-active regions. Therefore, the time needed for 
detecting specific pattern activation is trivial.  
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