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Abstract— A method is proposed for modeling random and 
fixed effects in statistical maps of multisubject fMRI data. 
Using this model, we separate a fixed common activation map 
and a random effect for each subject. The proposed model 
shows a good multisubject activation detection for group 
analysis and also illustrate that the between subject variation 
lies mostly in activated areas. The method was implemented 
and tested on both simulated and experimental functional MRI 
data of 9 subjects. 

I. INTRODUCTION 
unctional magnetic resonance imaging (fMRI) is a 
noninvasive technique for detecting the activated regions 
of the human brain using BOLD effect and fast magnetic 

resonance imaging methods [1]. Group analysis of 
functional MRI (fMRI) determines the variation of brain 
activated areas among different subjects in a group and the 
common activated regions between different individuals in 
an fMRI experiment. 

 Variability of fMRI activation signal among different 
subjects is usually described by fixed and random effects 
[2]. Fixed effect component includes the common effect 
which caused by all subjects through tasks, However 
random effect shows the variation which was caused 
between sessions and different subjects. 

Various methods have been used for group analysis in 
fMRI.  The group analysis methods based on General Linear 
Model (GLM) framework are used extensively. In GLM 
based methods the following stages are applied. A statistical 
map is derived for each subject in the first stage and the 
"effect" of interest and its “standard error” is derived at each 
voxel. In the second stage the "effects" and "standard errors" 
of different subjects are combined and the final decision is 
made by the use of group t-test [3]. 

As a data-driven method, ICA(independent component 
analysis) was used for both single subject and multi-subject 
analysis[4]. Multi-subject ICA, uses the time series of all 
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subjects, to separate spatial source. One of them is the 
activation source. A PCA (Principal component analysis) 
based, multivariate, method was applied on multisubject 
fMRI analysis. Applying PCA on fMRI time series creates 
the reduced feature space and after projecting time series on 
this basis a method similar to GLM can be used for group 
analysis [5]. Shams et al. introduced a General likelihood 
ratio test approach for group analysis in which linear 
combinations of time series of different subjects were used. 
Thus an adaptive weighted average of multi-subject time-
series is used in a statistical framework for activation 
detection [6]. 

In our proposed method GLM is used to obtain statistical 
maps of individual subjects. In the second step analysis of 
fixed and random effect terms of these maps are separated in 
wavelet domain. In order to separate these effects, two 
dimensional wavelet transform is applied on the statistical 
maps. Based on a statistical method, the wavelet coefficient 
related to random effect is then identified. Moreover a 
vertical energy thresholding is used to remove the random 
noise from data. 

Theory of the model in wavelet domain and GLM 
analysis are discussed in the second section. Materials which 
are used in this research are described in the third section 
and results and discussion come in the fourth section. 
Finally the conclusion is made in the fifth section of the 
paper. 

II. THEORY 

A. General Linear Model 
In general linear model fMRI time series is modeled by 

some regressors related to activation pattern and other 
components like trends. Thus the first step in GLM is the 
construction of design matrix which contains the above 
regressors (in columns). Denote the fMRI signal in time t 
with x(t), and the stimulus by s(t). The simplest model is a 
linear system with impulse response h(t) which is convolved 
with input stimulus input s(t) to produce activated cerebral 
signal x(t). 
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The effects from multiple stimuli are added in linear 
system like equation (2). In this equation xi(t) is the response 
regarding to i-th stimulus. 
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Trend is also an important part of signal which is usually 
modeled by a polynomial. There are also errors and noises 
which are modeled as εi, which is assumed to be a white 
noise. The following equation shows all effects and 
components together [7]. 
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For each bases of GLM we put a normalized column in 
design matrix. If we put the time series of one subject in 
matrix y we have εβ += Xy , in which ε is the system noise 
with a zero mean and normal distribution. β is a vector that 
shows relation between basis of signal subspaces and fMRI 
time series. For instance if β1 is the corresponding 
coefficient of activation pattern, its value will show the 
relationship between time series and activation pattern. 
Therefore this value can be used as activation score. The 
least squares estimation of vector β. Can be written as: 
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Based on estimated β, an activation map can be 

constructed using t-statistics, and a contrast c via: 
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B. Fixed and Random Effect in Wavelet Coefficients 
Let us put the fMRI statistical maps of Ns various 

normalized subjects (sessions) in different slice of an 
Ns×M1×M2 matrix Y. These statistical maps correspond to a 
specific slice among all subjects. The discrete wavelet 
transform of statistical maps data is achieved by:  
 D=WY  (6) 

Therefore by applying a spatial wavelet transform on each 
of slices (activation map) a matrix D is formed, whose 
elements can be written as mid , m={1,…,Ns}, 

i={(1,1),…,(M1,M2)}. 
The two dimensional wavelet transform coefficients, 

matrix D, contain the wavelet coefficients of all statistical 
maps, which can be written as sum of the three components.  

ZRθD ++=  (7) 
The fixed effect component θ is common to all subjects. 

The random effect component which is denoted by R 
describes the deviation of subject's activations from the 
common effect (inter-subject variability), where as Z models 
stochastic noise (intra subject variability). The elements of Z 
are assumed to be i.i.d each having N (0, σ2) distribution.  

If we denote 2
ms  as the sample variance of wavelet 

coefficients dim, i= {1…, sN } and id  as the mean of these 
coefficients along different subjects, Thus  it can be shown: 
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In the above formula, mu  is one if the ith wavelet 
coefficient (di) contains random effect and it is zero 

otherwise. mτ  is the additive consequence of random effect 

on variance. 2
aχ  denotes chi-square distribution with a 

degrees of freedom. A good estimation for noise variance 
can be obtained from high frequency coefficients by 
following equation. 
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The logarithm of sample variance would approximately 
have a normal distribution 2 1

*(ln( ), 2( 1) )sN Nσ −− and if the 
wavelet coefficient contains random effect its mean become 
larger. Therefore for random effect coefficients the quantiles 
of 2ln( )mS  will be greater than that of 

2 1(ln( ), 2( 1) )sN Nσ −− .Thus the quantile-quantile diagram 
of 2ln( )mS and 2 1(ln( ),2( 1) )sN Nσ −− is used to find the 
wavelet coefficient with significant random effect [8]. 
Vertical energy thresholding was used for noise reduction. 
Thus the low energy coefficients were eliminated as noise 
parts.  

III. MATERIALS AND METHODS 

A. Simulation data 
Functional MRI data were simulated for nine subjects. 

Each subject is data contains one slice of 64×64 pixels in 
252 time point. Each time series is composed of Gaussian 
white noise and simulated BOLD signal with a contrast 
randomly selected from a normal distribution with mean 2% 
and standard deviation 0.37%. 16 different activated regions 

are shown in figure 1 defined for data.  Hemodynamic 
response is modeled with a Gamma function with variable 
parameters among active voxels. 

 

B. Experimental data 
A set of sensory-motor fMRI data is analyzed in this 

research which is provided by fMRI data center 
(http://www.fmridc.org) [9]. The functional data acquired 
during an event related fMRI experiment in a 1.5 T scanner. 
During the experiments, 128 T2*-weighted volume images 
were acquired using asymmetric spin echo pulse sequence. 
Each volume image consisted of 16 slices and each slice was 

 
Fig. 1.  The activated regions where activation was added on 
simulation data with random contrasts. 



 
 

 

composed of 64×64 pixels. A set of anatomical images was 
also acquired from each subject, which consists of 128 
sagittal slices with 256×256 pixels. Nine young non-
demented subjects were selected from these data. Their 
functional images were motion corrected using the AFNI 
software package (Medical College of Wisconsin, 
Milwaukee, WI) [10]. Then their anatomical images were 
transferred to the standard space of Talairach and Tournoux 
and the resulted transform is used for spatial normalization 
of functional images in the AFNI software package. The 
anatomical images were used to localize the active regions 
in the AFNI software. For each volume of functional data, 
the sub sampling process produced a volume image with 
54×64×50 voxels and voxel size of 3×3×3 mm. 

Drifts and the mean component were removed from time 
series of each voxel using high pass filter [5]. 

C. Methods 
The method which was used in this paper includes three 

steps. first, statistical maps of analogous slices of different 

subjects are obtained. Statistical maps are made by a t 
statistic,  which is defined as: 

ScT /β̂=  (9)  
 T is the value of the effect of interest divided by S which 

denotes the estimated standard deviation of noise on the 
specified time series. Fixed effect component of statistical 
maps is derived by averaging the wavelet coefficient of all 
subjects in group and noise reduction by vertical energy 
thresholding. Random effect of subjects individually 

obtained after applying the separation algorithm.  

IV. RESULTS AND DICUSSION 
The algorithm is applied to simulated and experimental 

data and results are achieved. Statistical maps are found 
using statistical parametric mapping software, SPM2 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm2/). These 
maps include normalized T values. Then fixed and random 
effect components in wavelet domain are separated via the 
method of section I.A. The results of simulation data (Fig 2) 
show that random effects manifest themselves around 
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Fig. 3.  Random effect and fixed effect components obtained from T-
map on experimental data which is shown in anatomical images with 
false alarm rate 0.005 on talairach standard atlas. (a) Random effects on 
4 different subjects. (b) the results of averaging  statistical maps. 
(c)Fixed effect of 9 subjects 
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Fig. 2.  Random effect and fixed effect components obtained from T-
map simulation data. (a) Random effects of 9 subjects. (b) fixed effect 
component. 



 
 

 

activated regions. This is due to the variability of activation 
amplitude (BOLD effect) among different subject. In fact 
the random spatial random effect of each subject 
demonstrates the deviation of subjects from common effect. 
ROC curves of fixed effect and averaging statistical maps 
that are shown in figure 2. The ROC curves show the effect 
of noise reduction in proposed model on noisy simulated 
data. 

The method is also applied to experimental data random 
effect and fixed effect components of 9 subjects are 
obtained. Another simple group analysis using GLM, which 
is the average of statistical maps result, are shown beside 
wavelet fixed effect results in figure 3 (for better 
observation on overlay activations and random effects are 
thresholded on experimental data). These results are shown 
on anatomical data which was obtained during the 
experiment. Regions where activations are detected include 
occipital cortex, precentral gyrus, cerebellum, inferior 
frontal gyrus, thalamus, mid temporal gyrus.  AFNI software 
is used to overlay functional activations on anatomical data 
in talairach atlas. The detected points as random effect 

components can show regions which have variation in 
activation or become active in minority of subjects. The 
experimental results show that the fixed effect of statistical 
maps makes smooth activated regions.  

 

V. CONCLUSION 
In order to model the variability of fMRI statistical maps 

and to separate the random effects (inter subject variability) 
from stochastic noise, we proposed a model in wavelet 
domain. Proposed model is capable of modelling the 
variation of activation regions among different subjects. The 
model was fit to simulated and experimental fMRI data, and 
illustrations of fixed and random effect parts are presented. 
Based on this model, a complete multi-subject study of 
fMRI data is carrying on, in which the estimated random and 
fixed effect parts will be used for activation detection.  

The proposed method in this paper gives us good results 
on common effect with an extra option to have between 
subject variations for all subjects individually.  
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Fig 4.  ROC curves, False alarm rate vs. Sensitivity. 


