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ABSTRACT

K-BALL is a general method for localization of anatomical 

phenomena of the same origin with natural discrepancies 

distributed over a reference space, e.g., human brain 

anatomical structures. In this paper, we focus on 

information analysis step (2nd step) of K-BALL during 

which landmarks extracted in its first step are evaluated. We 

provide a framework in which rules are automatically 

generated based on estimated and derived models. We show 

that the rules based on the derived models can improve the 

overall success rate of K-BALL. Each rule evaluates the 

extracted points by producing an intermediate confidence 

factor (ICNF). A total confidence factor is calculated using 

ICNF’s to facilitate the acceptance or rejection of a set of 

points as landmarks of interest. Using the rules merely 

based on the estimated models, simulation study produced 

an overall success rate of 91.8%. Using the rules based on 

both of the estimated and derived models, this rate increased 

to 92.5%. 

1.  INTRODUCTION 

Anatomical Landmark localization is important [1] as it 

provides: 1) initial information for registration, 2) 

navigation and retrieval guidance through the image data 

[2], 3) initial models for segmentation [3], and 4) valuable 

(though rough) information about morphologic or 

volumetric features of the organs or structures of interest 

[2]. We have proposed a two-step knowledge-based method 

to localize the hippocampus in the human brain. The search 

for this structure passes through lateral landmarks of the 

lateral ventricles (LV), superior landmarks of the 

hippocampus (SH), inferior landmarks of the insular cortex 

(IC), inferior and lateral landmarks of hippocampus (IH, 

LH) [4]. The search takes place within certain areas and 

paths, which all together is called a statistical roadmap. We 

have used the localization results as an initial state of a 3D 

deformable model to segment the hippocampus. The steps 

involved in the proposed method are: 1) anatomical 

information extraction, and 2) information analysis. In this 

paper, we present a mathematical framework as well as 

some simulation results (using models estimated in real 

circumstances) of the second step when a certain rule-based 

system is used. 

2.  METHOD 

The localization method requires an expert to define a rough 

roadmap passing through a set of high-contrast landmarks 

(milestones), and eventually reaching at the structure of 

interest. The expert is asked to mark the milestones as 

desired points and a few points around them as undesired 

points. We estimate Gaussian models for the marked points 

and we use them to determine the optimal search area for 

each desired landmark. The search areas estimated in this 

step are considered as segments of the statistical roadmap. 

Details of the first step of the K-BALL are described in our 

previous publication [4]. 

 In the second step, we use the above statistical roadmap 

along with: 1) symmetry and 2) absolute statistical models 

to analyze the extracted information. The symmetry models 

indicate how similar the landmarks of interest are located 

relative to the interhemispheric plane. The absolute spatial 

models provide the distribution of landmarks of interest in a 

reference coordinates system. 

2.1. Definitions 

Definition I: An uncertain roadmap, G = (V, D), is a 

directed acyclic graph (DAG). V is a set of nodes, vertices 

or milestones. D is a set of search segments as ordered pairs 

or edges (vi, vj) D, where vi, vj V.

 A vertex or milestone vi V consists of one desired 

landmark (
0,iL ) and one or several undesired ones (

jiL ,
, j

0). Each landmark is spatially characterized by an uncertain 

(e.g., Gaussian) distribution model except for the initial 

milestones (vi V0), which are considered deterministic. 

Each initial milestone consists of only one desired landmark 

(
0,iL ). The initial points are defined based on a high 

contrast, robustly identifiable landmark. There is a 

deterministic relationship between the initial landmarks. 

Definition II: A universe, 
nNi

iU )( )( , is a set of domains 

)1( ,…, )( nN , each of which corresponds to a milestone of 

the roadmap G where there are n milestones (excluding the 
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initial ones). Therefore, in domain )(i , there are one 

desired landmark, 
0,iL , and ni undesired landmarks, 

jiL ,
,

where j  {1, …, ni}.

 As a priori source of knowledge, we define a set of 

rules mMM
RR ,...,1 , where each of them deals with one or 

several milestones in G. The modularization set M of 
nN  is 

a power set of milestones indices that determines what 

combinations of the milestones are in the rule base. For 

instance, when there is a rule that involves i-th and j-th

milestones, then there exist an index set 
kM  = {i, j} M.

Definition III: }|{),( MMRMUR i

M i is a rule base 

with regard to the universe U and the modularization M.

 The total evidence consists of a set of observations 
mNN EE ,...,1  each of which corresponding to one or several 

milestones (initial ones excluded) of the G. An evidence 

may look like xfxfxfE
iiii

k

nvvv

N

,1,0, ...,,, , which is 

produced by desired and undesired models of the 

corresponding milestone, vi, for the extracted point, x ,

where
jvi

f ,
 is the distribution function of the j-th landmark 

of the i-th milestone. Note that similar to modularization, a 

partition, N, is a power set of milestones that determines the 

framework in which our observations take place. 

Definition IV: NNENUE i

Ni |),( is an evidence 

system with regard to the universe U and the partition N.

2.2. Rule Base Design 

The uncertainty models of the milestones enable us to 

evaluate the reliability and accuracy of our observations of 

the milestones. Our observations are the results of the 

searches performed during the information extraction (first 

phase) of the K-BALL. 

2.2.1. Rules Structure and Implication Mechanism 

In this paper, we only consider bipolar rules that either 

accept or deny an observation. If an extracted point resides 

inside the desired iso-contour (an iso-hyper-contour in n-D)

of its uncertain model, the corresponding rule verifies the 

observation, i.e., it produces intermediate confidence factor 

(ICNF) = 1. Otherwise, the rule rejects it, i.e., ICNF = 0. A 

weighted linear combination of the ICNF’s finally produces 

a total confidence factor (CNF) based on which we decide 

to accept or reject a set of observations, 
NofR

i

ii ICNF
NofR

CNF
1

1 ,   (1) 

where NofR is number of rules. 

2.2.2. Rule Categories
We define three categories of rules based on: (i) absolute 

locations of milestones, (ii) relative locations with regard to 

other milestones, and (iii) general symmetry of the brain 

relative to the interhemispheric plane. The subset 
absM of

the modularization M defined as: 

0| VvandiiM iabs
 determines the absolute 

rules. For the relative and symmetric rules, we limit 

ourselves to the rules where only two milestones are 

involved. 
relM  defined in (2) provides the framework for 

the relative rules. When 1),( ji vvPath , there is a path 

from milestone vi to vj and when 0),( ji vvPath , there is 

no such path. Formula (2) implies that the milestones from 

different hemisphere of the brain are not included in relative 

rules.
symM  defined in (3) provides the framework for the 

symmetric rules, where S is the set of all milestone pairs of 

the same structures that are located in different hemispheres 

of the brain, e.g., hippocampus. The modularization is the 

union of the above three sets: 
symrelabs MMMM .

2.2.3. Estimated and Derived Rules 

The uncertainty models used in K-BALL are twofold: 

estimated and derived. Therefore, there are two types of 

rules: the ones designed based on estimated models (est

rules) and the ones designed based on the derived models 

(drv rules). Let’s consider a case in which there exist 

estimated models of the relative distributions of the 

consecutive milestones. As one may notice, Mrel allows 

defining relative rules for non-consecutive milestones, too. 

In order to construct the rules for non-consecutive 

milestones, we compute the relative uncertainty models 

between them. Let’s consider vi and vj in a simple case with 

1),( ji vvPath  and only one intermediate milestone, vk, in 

between. When the uncertain models are jointly Gaussians, 

we directly convolve vi and vj models to compute the model 

of vj from the vi standpoint, i.e., k

mj

i

k

i

mj

v

L

v

L

v

L ,0,,

 and 

k

mj

i

k

i

mj

v

L

v

L

v

L CCC
,0,,

, where  and C are mean vector and 

covariance matrix, respectively. The question of whether or 

not the derived models would bring any useful information 

to the rule-based system will be addressed in the following 

paragraph.

 In general the Gaussian density function is 

xxx ~~exp
)2(

1
)( 1

2
1 C

D
f T

nvi

, therefore, the iso-

subspace (hyper-ellipse) is: 

0

1

2
1 )2(ln2~~ zCC nT

xx , where |C| is the 

determinant of C. In 2D the iso-contour (ellipse) is: 

02ln2~~2~~
0

2222 zCCyxyx xyxy .

Also, note that throughout this paper the iso-contours are set 

at a level that 90% of the total volume under the distribution 

resides inside them (except for the S that will be discussed 

later).
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1),(1),(;,,|, jqiqqjirel vvPathvvPathVvandVvvandjijiM      (2) 

SvvandvvPathvvPathVvandVvvandjijiM jijqiqqjisym ),(1),(1),(;,,|, 0
  (3) 

We intersect the above iso-contour with an arbitrary line 

xmy ~~
 passing through the mean location of the 

distribution. This will provide us with a sense as how the 

iso-contour of the derived models iv

mjL ,
 varies as its 

covariance matrix deviates from its estimated model kv

mjL ,
,

incorporating the vagueness of the intermediate model 
iv

kL 0,
. Let P and Q and R in Fig. 1(a) be the iso-contours of 

iv

kL 0,
, kv

jL 0,
, iv

jL 0,
, respectively, which are all jointly Gaussian 

distributions. Computing the following system of equations 

produces the intersecting points: 

xmy

zCCyxyx xyxy

~~

02ln2~~2~~
0

2222

where
xxx~ ,

yyy~ . Direct substitution of y~  in 

the first equation yields: 

2

1

2

2ln2
~

222

0

222222

xyxy

xyyxxyyx

mm

z

x

when m = tan( ) and  = /2 then 0~x  therefore, 

2
1

2

02ln2~

x

zCC
y . Using these formulae 

and changing 0 , we calculate the distance between 

P, Q, R, etc. The distance between Q and R is shown in 

Fig. 1(b) by a dot curve. The distance between Q and a 

contour computed by P+Q is depicted in Fig. 1(b) as a solid 

curve. Note that R is not even close to P+Q. Theoretically, 

the latter contour may not be even an ellipse and in general 

it cannot be an iso-contour of any Gaussian distribution. 

With p, a realization of iv

kL 0,
, as shown in Fig. 1(a), we 

expect the iso-contour T to represent Q. Consequently, a 

point like q can be accepted by the corresponding relative 

consecutive (est) rule. On the other hand, the exact same 

point will be rejected by drv rule represented by R. Even if 

we increase the sensitivity of the latter rule; producing the 

larger iso-contour S that encompasses T, it may not still be 

a match for P+Q. Fig. 1(b) clearly shows the discrepancies 

between the above two contours; dashdot curve vs. solid 

curve, respectively. The immediate consequence is that the 

set of est rules do not generate the same results as that of 

neither drv rules nor the combination of two (est+drv).

Therefore, producing rules based on derived models can be 

justified. The above findings can be formally summarized 

by the following observations and theorem. 

Observation I: iv

kLp 0,1
, kv

jLp 0,2
, and iv

jLp 0,3
 such 

that 01pfP
 and 0| 212 pfppf TQ

 but 

03pfR
, depending on the choice of threshold for iso-

contour per each model. Where  indicates that p is a 

realization of L, and 
Zf  is the distribution based on 

which iso-contour Z has been computed. 

Observation II: iv

kLp 0,1
, kv

jLp 0,2
, and iv

jLp 0,3
 such 

that 01pfP
 and 0| 212 pfppf TQ

 but 

03pfR
, depending on the choice of threshold for iso-

contour per each model with  and 
Zf  as before. 

This insight leads to the following theorem that 

constitutes design of the rules using derived models. 

Theorem: ),( drv

relMUR  does not produce identical results as 

),( est

relMUR  for a given observation oN
E . Note that est

relM

and drv

relM  are the est and drv subsets of the rule base, 

respectively.

Fig. 1. a) Iso-contour representations of the estimated and derived models. Note that P, R, and S are in reference coordinates system (vi)

while Q and T are in coordinate system of vk. b) Distances between Q and R (dot), Q and P+Q (solid), Q and S (dashdot). 

P
Q

R

S

T

p

q
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The above theorem shows that it is possible for the drv rules 

to be useful in the sense that they may support some 

observations, which are not supported by est rules and vice 

versa. The following algorithm generates the relative subset of 

the Modularization, 
relM .

1. DvvandVvvandjijiM jijirel ),(,,|, ,

relrel MM , BfS = .

2.
relji Mvv ),(  and Dvv jj ),( 1

, if 

olthdfvL

kjj

i

LsoLIso

v

jjkj xx
)()(

0,11,1

,10,1

, (olth is an overlap 

threshold) 

olthdf

kjj

i

LIsoLIso

v

kj xx

,10,1

,1
 then ),( 1ji vvBfSBfS .

3. If BfS =  terminate the algorithm, otherwise 

BfSMM relrel
, BfSM rel

 and BfS =  and go to the 

second step. 

3.  SIMULATION AND EXPERIMENTAL RESULTS 

We have simulated random vector x, using white noise w, as 

shown in block diagram of Fig. 2, by calculating L = V 1/2

where V is the orthogonal matrix comprised of eigenvectors 

of the covariance matrix of x and  is the diagonal matrix of 

the corresponding eigenvalues, and mx is the mean value of x.

Fig. 2. Generating colored noise x from white noise w.

 We used the simulation of the relative models estimated 

for hippocampus localization to optimize the weight vector, :
NofS

i

ii GTCNF
1

2
minarg     (4) 

 We generated 3000 patterns out of which 1000 were from 

desired models and the rest were from undesired models. GTi

is 1 for the patterns generated by only desired models and 0 

for the ones generated by undesired models. We have applied 

(4) to the relative rules of the estimated models both on the 

right and left side and the result of this experiment was the 

following weighting vectors, which is valid for both sides 

using the est rules and est+drv rules, respectively: 
est = [0.3280 0.2307 0.2170 0.0813 0.1430] 

drv = [0.2177 0.1186 0.0876 0.0470 0.0706 -0.0216 

0.1076 0.3725] 

where est

relM = {{iPnt,LV},{LV,SH},{SH,IC},{SH,IH}, {IC,LH}}, drv

relM  = 

{{LV,IC},{LV,IH},{SH,LH}} and iPnt is the roadmap starting point. 

The rule corresponding to the index set {iPnt,SH} was 

excluded from drv

relM  since it produced a low specification of 

0.6 (less than the choice of olth = 0.7) in spite of its relatively 

high sensitivity (0.92). As shown in Fig. 3(left), the specificity 

of the proposed rule base system is increased when using both 

est and drv rules. The sensitivity of the information analysis 

step is almost the same when switching between est rules and 

est+drv rules. Note that this is a preliminary study and we did 

not implement the algorithm to estimate the optimized set of 

est+drv. Therefore, there is a good chance to get even better 

results in case we thoroughly follow the proposed theory.

Fig. 3. (left) Specificity, and (right) sensitivity. Curves with squares 

and circles are produced by est and est+drv rules, respectively. 

 We have applied the rule-based method on T1-weighted 

brain MRI of 10 epileptic patients to localize the 

hippocampus. The method made no false alarms and the 

overall success rate of the K_BALL was 83.3%. Two 

perpendicular views of the MRI data with overlaid 

localization results are shown in Fig. 4.

Fig. 4. Sagittal (left) and coronal (right) views of T1-weighted MRI 

with cross sections of hippocampus initial models overlaid. 
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