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Abstract: The auditory periphery system recieves a 

one dimensional acoustical signal that describe how 

the local pressure varies with time.  However,  this 

one dimentional signal information is then somehow 

unfolded into a two dimentional time-frequency 

plane that tells us when which frequency occurs. 

Therefore, hearing process is thus based on some 

compromise between time localization and frequency 

localization  and  a kind of  time-frequency or 

wavelet type transformation is done in auditory 

signal processing. In this study the similarities 

between auditory transform based on auditory 

physiological process and wavelet transform is  

introduced. Specially band pass filter bank property 

and variable time and frequency resolution with the 

signal frequency are considered. 

 

Introduction 

 

In the inner ear or cochlea, sound is detected by an array 

of several thousand hair cells that convert mechanical 

vibrations into electrical activities. The cochlea is often 

thought of as a bank of filters because it performs 

frequency analysis using a frequency to place mapping 

along the basilar membrane. That is, each place along 

the membrane has a characteristic frequency, fc, for 

which it is maximally displaced when a pure tone of that 

frequency is presented as an input. As a filter bank, the 

cochlea exhibits the following characteristics:  (a) Non-

uniform filter bandwidths; Frequency resolution is 

higher at the lower frequencies (near the apical end of 

the cochlea) than at high frequencies (near the basal end 

of the cochlea). For an equivalent filter bank 

representation, this implies narrower filters that are 

more closely spaced together for low frequencies, and 

broader filters that are spaced further apart for high 

frequencies. (b) Asymmetric frequency response of 

individual filters; for a particular place along the basilar 

membrane with characteristic frequency fc, the response 

to fc+f is lower than the response to fc-f. For a 

bandpass filter centered at fc, this can be interpreted as 

an asymmetric magnitude response, with sharper cutout 

on the high frequency side. (c) Level-dependent 

frequency response of individual Filters; as mentioned 

in the previous section, basilar membrane motion is 

compressive and non-linear, meaning that doubling the 

input stimulus intensity does not result in doubling of 

membrane displacement. From a Filtering perspective, 

this implies that the peak gain of the filter centered at fc 

decreases as the level of the input stimulus increases. 

Another observation is that the magnitude response 

becomes broader and more symmetric with increasing 

sound levels. 

 The individual hair cells, and the auditory nerve 

fibers to which they are connected, are tuned to specific 

frequencies. [1] The population of auditory nerve fibers, 

thus, provides us with a frequency analysis of sound 

waveforms in the environment. Each auditory nerve 

fiber may be considered as a filter that signals 

information about the temporal structure of stimuli are 

within its preferred frequency range. As engineers have 

understood for years, the design of a filter involves an 

inevitable trade-off between the precision of frequency 

tuning and temporal tuning. A tone consists of cyclical 

fluctuations of air pressure, and to obtain an accurate 

frequency estimate, many cycles must be integrated. But 

a longer integration period means a decrease in the 

temporal accuracy of the filter in other words, a filter 

cannot signal both the frequency and the timing of a 

sound with arbitrary precision. Yet discriminations of 

the real world sounds often require accurate 

measurements of both frequency and timing. Precise 

temporal information is also important for the sound 

localization, which in many cases depends on time-of-

arrival differences between the two ears. The challenge 

for the auditory system, then, is to find the right trade-

off between timing and frequency analysis [2]. 

 

 
Figure 1: The frequency tuning curves of auditory nerve fibers 

superimposed and aligned with their approximate relative 

points of innervations along the basilar membrane 



Materials and Methods 

The membrane displacement and fluid pressure in the 

lower chamber are shown schematically in Figure 2. 

The wave is said to be in the long-wave region when its 

wavelength is long with respect to the height of the 

duct. In this region, the fluid particle motion is 

constrained to be essentially horizontal, like a wall of 

fluid moving back and forth in a pipe.  When the 

wavelength becomes short with respect to the height of 

the duct, the wave is said to have entered the short-wave 

region. At this point, the wave propagates more like 

ripples on the surface of a deep pond, where the fluid 

particles trace out elliptical trajectories, with greater 

amplitude near the surface. Finally, the wave dies out in 

the highly damped cut-of region. [3] 

 

 

 

 
 
Figure 2. Detail of wave propagation, showing the membrane 

displacement and fluid pressure along a vertical slice through 

the lower chamber, for a sinusoidal stapes vibration. The 

amplitude of the membrane displacement wave is small near 

the base, reaches a peak at the best place, and dies out quickly 

in the cut-of region. Deviations in fluid pressure from the 

resting pressure are shown as dark or light deviations from 

gray. The amplitude of the fluid pressure wave is large near 

the base, and gradually decays through the long-wave and 

short-wave regions, and dies out quickly in the cut-of region. 

In the short-wave region, the amplitude of the pressure wave 

decreases approximately exponentially away from the 

partition.  

 

 In Figure 3 (b) the isovelocity curve from a point on the 

guinea-pig cochlea is compared to neural isoresponse 

curve from a spiral ganglion cell in the guinea pig. This 

famous measurement, [5], shows that the sharp tuning 

of an auditory nerve fiber is determined at the 

mechanical level of the basilar-membrane vibration.  

Since the system is nonlinear, these isoresponse tuning 

curves are not directly comparable to transfer function 

data, as pointed out by Lyon [7 ]. 

Figure 4 shows tuning curves of auditory periphery and 

the combinations of band pass filter bank .In 

comparison with wavelet filter bank it could be 

concluded that both systems are decomposing input 

signal into different frequency bandwidth and the 

coefficient of bandpass filters considered as a 

representation of the signal. The frequency response of 

the tuning curves indicate that like wavelet mother 

function and daughter functions, each frequency 

response of the tuning curve could be obtain  by shifting 

and translation of certain tuning curve frequency 

response.[7], [8] 

 

 
(a) 

 
(b) 

 
Figure 3.(a) A comparison of isovelocity response from a 

guinea-pig basilar membrane and neural isoresponse from a 

guinea pig spiral ganglion cell. Both curves show the level of 

input stimulation required to maintain a constant output 

response (b) Rhode’s data, taken from a live squirrel monkey 

using the Mossbauer technique. The two curves indicate 

responses of the basilar membrane at two different positions, 

x1 and x2, on the basilar membrane, where x1 is 1.5 mm closer 

to the apex than x2. The best fit lines in the amplitude figure 

were drawn by Rhode. 

 

 
 

Figure 4: Cat neural tuning curves from Eaton Peabody Lab. 

The pressure scale, in dB, has been reversed to make the 

curves look like filter transfer functions. The response “tail” 

for the 6 kHz neuron is the “flat” region between 0.1 kHz and 

frequency in the tail the sound must be above 65 dB SPL 

(which on this scale is down) before the neuron will respond. 

 

It is well known from Fourier theory that a signal can be 

expressed as the sum of a possibly infinite, series of 

sines and cosines. This sum is also referred to as a 

Fourier expansion. However, the big disadvantage of a 

Fourier expansion is that it has only frequency 



resolution and no time resolution. This means that 

although we might be able to determine all the 

frequencies present in a signal, we do not know when 

they are present. To overcome this problem in the past 

decades several solutions have been developed which 

are more or less able to represent a signal in the time 

and frequency domain at the same time. The wavelet 

transform or wavelet analysis is probably the most 

recent solution to overcome the shortcomings of the 

Fourier transform. In wavelet analysis the use of a fully 

scalable modulated window solves the signal-cutting 

problem. The window is shifted along the signal and for 

every position the spectrum is calculated. Then this 

process is repeated many times with a slightly shorter 

(or longer) window for every new cycle. At the end, the 

result will be a collection of time-frequency 

representations of the signal, all with different 

resolutions. Because of this collection of representations 

we can speak of a multiresolution analysis. In the case 

of wavelets we normally do not speak about time-

frequency representations but about time-scale 

representations. Scale being in a way the opposite of 

frequency, because the term frequency is reserved for 

the Fourier transform. The wavelet analysis described in 

the introduction is known as the continuous wavelet 

transform or CWT. More formally it is written as: 

  

(1) 

where * denotes complex conjugation.  

 

This equation shows how a function f(t) is decomposed 

into a set of basis functions , called the wavelets. 

The variables s and , scale and translation, are the new 

dimensions after the wavelet transform. The wavelets 

are generated from a single basic wavelet (t), the so-

called mother wavelet, by scaling and translation: 

    (2)  

In (2) s is the scale factor, is the translation factor and 

the factor s
-1/2

 is for energy normalization across the 

different scales. It can be shown that the transform 

which is done in the cochlea could be estimated by a 

kind of wavelet transform. The two main roles of the 

cochlea are to separate the input acoustic signal into 

overlapping frequency bands, and to compress the large 

acoustic intensity range into the much smaller 

mechanical and electrical dynamic range of the inner 

hair cell.  

Variations of air pressure at the ear are mechanically 

transferred into movement of the basilar membrane 

which is located in the cochlea. The basilar membrane is 

equipped with hair cells that react on deviation of the 

membrane from its rest position if the cochlea is 

imagined unrolled the basilar membrane extend along  

real axis. Sound information at any point can be 

represented as real function B(x,t), the deviation of the 

membrane inside the cochlea at position x and time t. 

Experimental measurements show that for a sinusoidal 

stimulus the  response might be: 

tjextxB 
  ))log((),(        (3) 

Which it means that the dependency of ψ ( ) is 

approximately a logarithmic shift so for input acoustic 

signal f(t) which has got its Fourier Transform F(ω) 
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By substituting f(t) in  (3) and putting (4) as f(t) the 

B(x,t) function could be written as follow: 
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By some mathematical manipulation of (7), following 

term will appear: 
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By considering x=-log s, the final equation for basilar 

membrane movement could be written as: 
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Therefore, the transform of acoustic signal from the 

eardrum to the cochlea with a logarithmic scale along 

the basilar membrane could be approximated by  

continuous wavelet transform. Physiological 

observation justify that, the auditory system has got sort 

of wavelet like transform behavior. Neural tuning is 

measured by measuring the spiking activity in an 

auditory nerve fiber as a function of the frequency and 

intensity of a probe search tone. The locus of threshold 

intensities that cause the neuron to fire slightly above its 

spontaneous rate is called the neural tuning curve. The  

superscript indicates that the probe intensity is at 

threshold. Each neuron has such a tuning curve, which 

is tuned to its “best” characteristic frequency.[8] 



Results 

As it was shown the wavelet transform perform the log-

linear frequency analysis and constant quality factor and 

can be used as an approximation of auditory acoustic 

signal transform. The cochlear impulse response was 

used for choosing the analyzing wavelet transform. The 

impulse response at 20mm from the oval window was 

selected as a wavelet function because its peak 

frequency about 1000Hz and in log-linear scale this 

frequency is almost at the center of the audible range. 

By this consideration an auditory wavelet transform 

could be realized.  

 

Discussion 

A comparison between the auditory periphery acoustic 

signal transform and wavelet transform shows that, also 

there are similarities especially in band-pass filter bank 

property and variable time and frequency resolution 

with the signal frequency, but the experimental 

measurement  shows that some differences exist, and 

the main difference is in the quality factor. Wavelet 

transform is a filter bank with constant quality factor, 

but physiological research in hearing system found the 

quality factor which is changing and highly influenced 

by the activities of the hair cells. 

 

Conclusion 

The wavelet transform performs the log-linear 

frequency analysis with constant quality factor filtering 

and can therefore simulate the auditory model. The 

cochlear tuning curve is used for choosing the analyzing 

wavelets or mother functions which determine the 

overall filter shape. The impulse response at medium 

distance from oval window could be chosen as an 

analyzing wavelet because its peak frequency is almost 

at the center of audible range (on a log-linear scale) 

Figure 1 shows the impulse responses (in inverse scale) 

of auditory tuning curves. These responses satisfy the 

admissibility condition so they can be used as a mother 

function. So analysis and synthesis stage could be 

implemented. 
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