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Derivation of Error Probability of Compressive Sensing Methods 
Based on Information Theoretic Concepts 

 

 
 
 
Abstract: A methodical definition of the probability of error for 
each of compressive sensing methods, a performance evaluating 
tool that has not been defined yet, is the theme of this work. To 
this end, an efficient information theoretic method is proposed 
in order to achieve a reliable measure. With making a 
replication with the communication channels, the probability of 
error is set as a function of the Mutual Information (MI) with 
the Compressive sensing process. Other methods of 
performance assessment including different kinds of error such 
as Mean Square Error (MSE) are in use prevalently; however, 
fail in some cases because of the lack in inclusion of the 
coherency between structure of the result and that of the 
original signal. MI helps to overcome this deficiency in the 
performance analysis of the compressive sensing methods. 
 
 
Keywords: compressive sensing, mutual information, 
error probability. 

1. Introduction 
    Nearly most of the natural and artificial signals 
employed by human have a sparse representation in a 
specific space called sparse space. This means that they 
have very few nonzero elements in the sparse space. 
Owing to this specification, one can utilize appropriate 
algorithms to work with sparse signals more efficiently 
with less energy. In recent years, compressive sensing has 
been considered as a powerful tool for manipulating this 
common area of signal processing and information 
theory. It has found wide range of applications in 
different sciences and fields of study such as data 
networks, medical technologies, image processing, radar 
and sonar, communication systems, and optical devices. 
In spite of this applicability, insufficient amount of work 
has been directed toward establishing concrete 
formulations regarding its performance evaluation. [1], 
[2] are two cases investigating this subject from an error 
point of view. They set bounds on the MSE under 
exclusive conditions. However, a unified measure of 

performance has never been studied for probability of 
error. 
     By a comparison between communication channels 
and compressive sensing, a fundamental similarity in 
their structure is detectable [3]. They both encode a 
message and finally decode the received noisy version of 
it with some nonlinear methods. Employing this 
similarity, one can take advantages of analyses presented 
for the communication channels in the hope of 
establishing a performance measure for the compressive 
sensing methods. There exists a proven connection 
between the error probability and mutual information for 
data transmission over the communication channels [4]. 
After some modifications, it is applicable to the 
compressive sensing context. Experimental results in 
Section 5 verify this claim. 
     In this paper, evaluation for the probability of error is 
done for two methods of Basis Pursuit and Orthogonal 
Matching Pursuit [5], representatives of two main groups 
of sparse reconstruction methods. This task is 
accomplished through connecting probability of error to 
the mutual information specified to each of these 
algorithms. Being able to represent non-linear statistical 
dependence between random variables makes MI an ideal 
choice consistent with the inherent non-linearity of CS. It 
takes its highest amount when the original signal and the 
reconstructed signal are exactly the same so that given its 
value, one can say how correct the answer is. Therefore, 
it has a close and unitary connection with the error 
probability in concept. 

The materials in the paper are presented in the 
following order. First, a mathematical description of 
compressive sensing and two methods of basis pursuit 
and orthogonal matching pursuit are provided in Section 
2. Next, in Section 3, definition of mutual information is 
given. The error probability formulation approach is also 
thoroughly presented in Section 4, and the experimental 
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results and conclusion are provided in Section 5 and 6, 
respectively. 

2. Description of The Compressive Sensing 
Methods 

    In this section a brief review of the CS methods is 
presented. There are two separate parts for a CS process: 
sampling and reconstruction. The general sampling 
process is shown in Equation (1). 

              (1) 

where  is the original sparse signal, A is the 
measurement matrix, and n is the additional noise. In 
order to have most informative samples, matrix A must 
have statistically independent entries. Sparse, Fourier, 
Hadamard, and Gaussian matrices are qualified instances 
for this end. There are miscellaneous algorithms capable 
of reconstructing the original signal with high precision 
under specific conditions. From these methods, Basis 
Pursuit and Orthogonal Matching Pursuit are explained in 
the following sections. 
2.1 Basis Pursuit 
    The most precise CS methods are those based on 
convex optimization methods such as  minimizing 
( ) and different modifications of this 
method: Basis Pursuit (BP), defined in Equation (2), is in 
use more than the others. 

       (2) 

      Due to computational complexity, this method has a 
low rate of response, and is suitable only for cases that 
precision plays the key role. When measurements are 
noisy, Equation (3) will be used instead of (2). 

      (3) 

where  is a noise-related parameter. 

2.2 Orthogonal Matching Pursuit 
    In addition to the above methods, there is also another 
group of algorithms that find a solution based on iterative 
calculations. Less computational complexity of this set 
has made them very fast. This property makes it 
advantageous over the former group of algorithms in the 
cases which prefer low computational complexity relative 
to precision. Orthogonal Matching Pursuit (OMP), Stage-
wise OMP (St-OMP), and Regularized OMP (ROMP) are 
three examples of this group of methods. In this group, 
OMP is the most common tool for signal reconstruction. 
The way by which OMP reconstructs sparse signals in 
seven steps is as follows [5]: 
 

1. Initialization: residual , index set , 
and counter t=1. 

2. Finding the index  that solves the easy 
optimization problem: 

 
 

3. Augmenting the index set and the matrix of 
chosen atoms: 

 
 

4. Solving a least squares problem to obtain a new 
signal estimate: 

 
 

5.  Calculating new approximation of the data and 
new residual 

 
 

 
6. Incrementing t and returning to step 2 if t < m. 
7. The estimate  for the ideal signal has nonzero 

indices at the components listed in . The 
value of the estimate  in component   equals 

the jth component of . 

3. Mutual Information 
    Mutual information is a methodical measure of the 
dependence between random variables [4]. Being always 
non-negative, dimensionless, in units of bits, and zero 
only in the cases that the variables are statistically 
independent are its key properties. In brief, the mutual 
information functions to determine the degree of 
structural dependence between random variables; In other 
words, mutual information is a kind of tool from some 
other ones that determines how much one random 
variable tells us about another; it can be thought of as the 
reduction in uncertainty about one random variable given 
characteristics of another. The formula by which MI can 
be calculated is shown in Equation (4). 

    (4) 

     Also, another definition for the mutual information I 
between m (scalar) random variables , i=1...m, is as 
follows. 

     (5) 

where H denotes differential entropy. 
These definitions require the probability distribution of 

both of the variables with their joint probability 
distribution. This causes computational complexities and 
difficulties regarding numerical integration of the 
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functions in Equation (4) and Equation (5). To use the 
definition of entropy, we have to estimate the density 
functions. This problem has made restrictions on the use 
of mutual information in some applications [6]. In some 
research works, an approximation of the mutual 
information is made based on polynomial density 
expansions [6,7] or on the cumulative residuals [8]. By 
means of histograms, calculating MI between random 
variables is also viable [9]. In this work, the later 
approach is selected to achieve proper results. 

4. Error Probability Verification 
    One can summarize a message transmission through a 
communication channel as shown in Fig. 1.  
 

 
 

Fig. 1: Block diagram of a communication channel. 

     The message x would be encoded to a codeword from 
a collection of M possible alternatives according to the 
model presented in Fig. 2. Here, the length of the 
codeword is considered m which equals to . After 
this stage, channel will add noise to the messages and 
gives the y vector. In most applications, an additive white 
Gaussian noise (AWGN) is considered for the above 
model. By decoding of this vector, recovered message  
is obtained. 

 
Fig. 2: Mathematical model of the communication channel. 

  The final objective is that is most similar to x. 
Though, presence of noise makes it open to not having a 
definite recovery, and information loss is inevitable. 
According to the noisy channel coding theorem, when 
transmission rate, R = , exceeds the channel 
capacity, probability of error increases rapidly. In 
addition, the highest number of messages that can be 
transmitted almost error-free is a function of the mutual 
information between x and . In this way, mutual 
information and communication channels will be linked. 
From large deviation theory [4], probability of error for 
each message ( ), when n is large enough, is connected 
with the mutual information as follows. 

        (6) 

We can relate the error probability to the  as shown in 
equation (7). An approximation is also made here for 
more simplicity in computations when M is large. 

        (7) 

Simply, we can apply this model to the CS process as 
it has been done before in other scenarios [10-12], [3]. To 
this end, some adaptations are made here. First, the M 
value is chosen as the number of possible ways that one 
can construct a binary k-sparse signal with n dimension 

so that . When the measurement matrix has a 
Gaussian random distribution with each column 
normalized to unity and the original signal is binary, 
according to the Central Limit Theory (CLT), it is 
possible to consider information loss as an additive 
Gaussian noise: 

 =       (8) 

where is the MI between x and  normalized by 
the x entropy:  

        (9) 

     By substituting M and  in (7), the final expression 
for the error probability will be: 

               (10) 

5. Experimental Results 
     For the purpose of validating the established 
relationship, a series of experiments are done. The 
experimental results are compared to the theoretical ones. 
The settings considered here for the experiments are as 
follows: measurement noise has Gaussian distribution 
and the Signal to Noise Ratio (SNR) is 100. The length of 
the original signals (n) equals 80 and number of 
measurements (m) is 30. Original binary signal has a 
uniform distribution of non-zero elements so that they are 
highly unpredictable from an information theoretic point 
of view. Measurement matrix has randomly selected 
entries from a Gaussian distribution with zero mean and 
unit variance. Columns of this matrix are normalized to 
one as stated in the previous section. 
     The criterion by which the practical probability of 
error is computed is the MSE defined in (11). 

                 (11) 

     Since we do not have the joint probability of x, 
because of the high computational complexity in its 
computation, the expectation operator is substituted with 
the averaging over the vector elements. When the MSE is 
greater than 0.01, a failure in reconstruction can be 
detected. Over a hundred trials, the number of failures 
divided by 100 equals the practical error probability.  
    The first part of experiments is dedicated to the 
normalized MI determination for two methods. The 
results of training based computation of the normalized 
MI are shown in Fig. 3. Through several examinations, it 
is established that these amounts of mutual information 
are constant for a specific setting; for several settings, a 
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complete collection of mutual information amounts for 
different methods is obtainable and applicable. 
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Fig. 3: Normalized mutual information for BP and OMP methods vs. 

sparsity of the original signal 

      Results of practical error calculation with the 
theoretical amounts are shown in fig. 4 and fig. 5 for BP 
and OMP methods, respectively. It is apparent that the 
estimations are highly precise and almost similar to the 
real results. 
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Fig. 4: Theoretical (dashed curve) and experimental values (solid curve) 

of error probability for BP method vs. sparsity of the original signal. 
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Fig. 5: Theoretical (dashed curve) and experimental values (solid curve) 
of error probability for OMP method vs. sparsity of the original signal. 
 

5. Conclusion 
     In this work, an estimation of error probability for two 
basic methods of Basis Pursuit and Orthogonal Matching 
Pursuit is worked out. This formula can be generalized to 
other methods of compressive sensing as well. Making a 
scientific comparison between communication channels 
and compressive sensing has helped us to drive this 
approximation. By this mean, probability of error is 
linked to the mutual information, a coherency detection 
measure between two random variables. Experimental 
results suggest that this measure is always constant for a 
specific compressive sensing process with predefined 
settings. Based on this verity, one can obtain it for each 
method with a training practice, and substitute it in the 
proposed formula in order to obtain the related 
probability of error. As the test results show, this is a 
reliable approximation. 
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