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Abstract
fMRI time-series are contaminated with unknown low frequency fluctuations which are 
called ‘trend’ or ‘confounds’. Conventional methods of trend removal try to consider a 
model with a specific degree of smoothness for trend. In this paper, we estimate trend 
components using partially linear models (PLM). PLMs allow one to combine detrending 
and analysis of time-series in one scheme. In addition, we developed estimation
procedures in time and wavelet domains for a nonparametric trend. We applied proposed 
methods on simulated and experimental data, and compared their performance with 
simple (linear) detrending through measuring the detection sensitivity, false alarm rate 
control, and variance of estimation.

Keywords: fMRI - Trend removal - drift - PLM(partially linear models)

1 PhD. student, School of Electrical and Computer Engineering, University of Tehran.
2 Assistant Professor, School of Electrical and Computer Engineering, University of Tehran,
3 Professor, School of Electrical and Computer Engineering, University of Tehran

Introduction
Functional magnetic resonance imaging 
(fMRI) is an important noninvasive 
technique for investigating the brain neural 
activity. Based on the coupling between 
local neural activity and regional changes 
in cerebral blood flow (CBF) and blood 
oxygenation level; it finds the activated 
regions of brain. The increment in CBF 
and blood oxygenation level; which is 
accompanied with neural activity, is
evidenced in the form of increase in *

2T
decay rate of active region. Therefore rapid 
acquisition of *

2T -weighted can reveal the 
variation of the blood oxygenation level.

One major limiting factor for fMRI is the
existence of disturbances such as 
correlated head or eye movements, scanner 
calibration drifts, and effects of 
physiological processes such as vascular 
flow and respiratory. 
Every time-series of fMRI is usually 
modeled as a linear convolution of 
stimulus pattern and with voxel-wise 
hemodynamic impulse response plus an 
error (Figure 1). This can be written in the 
following equation:

)()(*)()( tthtpty ii ε+= (1) 

where )(tp is temporal pattern of stimulus, 
)(thi  is the model of hemodynamic 

impulse response at voxel i, )(tε  models
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undesired effects and )(tyi  is measured 
time-series of the ith voxel. The linear 
model for describing BOLD effects in 
fMRI time-series is a very practical and 
common approach for analysis of fMRI 
time-series and detection of voxels. By 
modeling the hemodynamic response as a 
linear combination of definite basis 
functions [1], it is possible to rewrite the
equation (1) in matrix-vector format as 
follow:

εXy T += β (2) 

Where, y is the fMRI time series observed 
at a single voxel, X is the design matrix 
containing basis functions in columns. β  is 
the parameter to be estimated, and ε  is the 
vector of residuals. The term ε  in (2) can 
be written as a non-parametric component. 
So, equation (2) can be rewritten as follow:

εfXy T ++= β (3) 

This model is more flexible than (2). 
Because of its relation to the linear model 
(1), this model is called “partially linear 
model” (PLM) in literature. In this paper, 
we present two estimation approaches for
f (or trends) in model (3). The first is 
based on time-domain analysis [2] and the 
second is based on wavelet domain 
approach [3]. Then we compare the 
efficiency of these methods. 

Partially linear model Estimation
Since the trend component in fMRI time 
series is a smooth function of time, we 
adopt a sort of penalty function in the 
estimation which guarantees a smooth 
answer for non-parametric part ( f ). 
Therefore the cost function is the sum of
log-likelihood function plus a penalty term 
that tunes the smoothness of non-
parametric parts: 

)()(
2

2
WfWfWXWyfβ, T pβP λ+−−= (4) 

Where (.)p is a specific function that 
adjusts the smoothness of f  and λ is a 
smoothing parameter. W is a linear and 
orthonormal transform. The most 
important characteristic of this transform is 
representing the signal with a few numbers 
of coefficients. The cost function has two 
terms. The first term is a norm of error 
which preserves closeness of fit; and the 
second term is a measure of entropy by 
which smoothing of trend could be 
controlled. This penalty function can be 
estimated in either time or wavelet 
domains. 

Time Domain Estimation of Trends
In the time domain estimation, we assume 
that W=I, (I is n×n identity matrix). The 
most well-known solution for time-domain 
is called natural cubic spline in which the 
adopted penalty function in time domain is 
as follows:

Kfff Tp =)( (5) 

where K is the nonnegative definite 
smoothing matrix. Green and Silverman 
[4] proposed a method to define a proper 
smoothing matrix. In this paper, we use a 
simplified version of their work for 
equally-spaced time points. The smoothing 
matrix is considered as T1QQRK −= . The 
size considered for Q is n×(n-2) and the
entries are ijQ  for i = 1,…,n and j = 2,…,n-
1, where

1
,1,1

−
+− == Rjjjj TQQ and

1
, 2 −−= Rjj TQ

(6) 

With ijQ = 0 for 2≥− ji . RT  is the 
sampling time of image acquisition. Note 
that the columns are indexed with an 
unusual convention starting with j = 2. The 
(n -2)×(n-2) matrix R is given by

3/2 Rii TR = for i=2,…,n-1 
6/,11, Riiii TRR == ++ for i=2,…,n-2 

0, =jiR for 2≥− ji

(7) 
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It is now easy to show that the minimum of 
(4) with the penalty of (5) is;

yWXXWX x
T

x
1)( −= Tβ

yWKWf ff
1)( −+= λ ,

(8) 

where
1)( −+−= KIIW λx
TT

f XXXXIW 1)( −−=

(9) 

The implementation of spline estimation is 
computationally extensive because it 
contains inverse calculation of some 
matrices.

Wavelet Domain Estimation of Trends
In wavelet domain estimation, we assume 
that W is n×n wavelet matrix operator. 
If )(fp is defined as 1L norm (

1
)( Wff =p ), 

minimization of ),( fP β is turned out to
soft-thresholding [3]. So 

+−−−= )()( λββysign TT WXWyWXWf o (10)

The 1L  entropy is continuous but this 
comes at the price of shifting the resulting 
estimator by a constant. 

Smoothing Parameter
The optimal smoothing parameter λ  is 
determined with GCV [5]. For a givenλ , 
the GCV score is ;

2

2

2

)/)(1(
1)(

ntrace

β

n
GCV

H

WfWXWy T

−

−−
=λ

(11) 

Where, H is called ‘hat matrix’ which is 
defined as WfWXHWy T += β . The 
optimum λ minimizes GCV criterion.
GCV criterion has a logic interpretation. 
The nominator of (11) expresses the fitting 
quality, and the denominator control the 
over fitting. If f  estimated so that over 
fitted to the observation, the nominator of 
(11) will decrease, but simultaneously the 
denominator will decrease and GCV may 
increase.

Activation Detection after Estimation

In fMRI analysis, one tries to specify 
whether a time-series is active or non-
active. The null hypothesis ( 0H ) means 
that the time-series belongs to a non-active 
voxel and alternative hypothesis ( 1H )— 
means that the time-series includes 
activation. The parameter β  qualifies the 
activation contents of a time-series and 
therefore can be used for detection. The 
estimated β  can not be directly used for 
hypothesis testing. In fMRI literature
usually a t-test is used. If it is assumed that 
estimated β  has a normal probability 
density function under null hypothesis, 
then )var(ββ has a t distribution
under 0H . Variance of β  is calculated as 
follow [6]:

))((
)var(

2

2

H(IH)I

WfWXWy
T

T

−−

−−
=
trace

β
β

(12)

Computational Steps
In order to implement the method, it is 
necessary to run the following algorithm 
for each time-series:

1. Transform the time-series to a new 
domain, for example wavelet 
domain (optional).

2. Initialization, choose proper values 
for β .

3. assume a value for λ
4. For k=1,2,… until convergence (for 

the case W=I, there is a close form 
response and no iteration is needed) 

a. Compute β , f via (8,9) or 
(10)

5. Go to 3, until the GCV minimized. 
(The minimization here is done by 
optimization toolbox of MATLAB). 
6. Calculate t-value using t-test 
approach, form detecting active 
voxels.

Experiments
Simulated Data
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In order to produce simulation data, the 
Gaussian noise is simulated using random 
generator of MATLAB software packages.
A standard deviation of 10 for the density 
function was chosen. A Gamma HRF is 
used for hemodynamic system impulse 
response [7]:
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 Here, we consider, 063.0=σ
and 73.4=τ  .
A linear combination of a sin function 
( )256/2sin(5)(1 RnTnf π= ), a line 
( RnTtf 02.0)(2 = ) and a second-degree 
polynomial ( 2

3 000080 )(nT.(n)f R= ) are
used for simulation of trends. We assume 
RT =2s, and 2550 ≤≤ n , which means each 

time series has a length of 256 samples. 
Different activation intensities ( simβ  = 0.5, 
1, 1.5, and 2) in different sizes of clusters 
(64, 16, 4, and 1) were added to dataset. 
Therefore, the simulation time-series is 
produced as follows: 

)()())(*)(()( nnfnpnThny simsim εβ ++=

)()()()( 332211 nfqnfqnfqnf ++=
(14) 

which 1q , 2q  and 3q  are random numbers 
between [0,1] and their sum is always kept
equal to one. )(nε  is the white Gaussian 
noise with the standard deviation of 10. 

)(np  is the stimulation profile which is a 
series of randomly positioned impulses 
corresponding to our experimental fMRI 
data acquisition described in Oddball task 
session. The spatial pattern of activity is 
shown in Figure (2). The simulation 
dataset is used for investigation of 
sensitivity of the proposed PLM method in 
activation detection comparing with other 
methods.

Rest State fMRI data
The rest state data is acquired using a *

2T -
weighted gradient echo single-shot echo-

planner (EPI) sequence with msTR 1648= , 
msTE 45= , Flip Angle=90 and

2mm250250×=FOV . A total 256 EPI 
volumes were scanned from each subject. 
During data collection, the subject was at 
rest. 

Oddball task fMRI data
The task given to the subjects in this 
experiment is known as the ‘classic visual 
oddball paradigm’ in the EEG literature. In 
this task, a train of equally spaced visual 
stimuli is presented to the subjects. There 
are two types of stimuli: the standard 
stimuli and the target stimuli. The standard 
events occur more frequently than the 
target events. The subjects are instructed to 
silently count the target stimuli and report 
the total number at the end of the 
experiment. In the present study, the 
standard visual stimulus was an image 
consisting of the string of white characters 
‘OOOOO’ on a dark background, while the 
target image was the string of characters 
‘XXXXX’. Visual stimuli were delivered 
to the subject via a liquid crystal display 
(LCD) mounted on the MRI scanner’s 
radio frequency (RF) head coil. The target 
events were distributed randomly among 
the four runs and 1024 trials, but it was 
ensured that there were at least eight 
frequent events between every pair of 
target events. Two dataset were acquired in 
same condition from two subjects with the 
same temporal stimulation patterns.

Results
Both methods of trend removal — in time 
and wavelet domain are applied to the 
simulated data. We also applied common 
linear detrending method to fMRI and 
copared it with our proposed methods. As 
it shows in Figure (3), the detected voxel in 
simulated data for wavelet domain PLM is 
more than time domain PLM but they both 
have a significant difference with linear 
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detrending method which just removes a 
linear trend from time-series. Linear 
detrending can not detect active voxels as 
well as PLM approaches.
The rest dataset is used for calculating the 
empirical mean and variance of β .
It is also used for exploring the ability of 
methods in control of false alarm rate. As it 
shows in figure (4) the linear detrending is 
detected less false active voxels. Time 
domain PLM has better false alarm rate 
control than wavelet domain PLM. Real 
false alarm rate in all methods was higher 
than expected false alarm rate. In table (1) 
the estimation variance of β  in wavelet 
domain and time domain PLM approaches 
is less than linear detrending. The 
estimation variances achieved by PLM 
approaches are approximately the same.
The PLMs and linear detrending methods
are applied to oddball task data. The 
detected active areas are shown in figure 
(5). The linear detrending could not detect 
the ‘Insula’ and ‘the posterior cingulated 
gyrus’. The PLM approaches are detected 
mentioned areas but detected active areas
in wavelet domain PLM are wider than 
time domain PLM.

Conclusion
In this paper, we compared two methods of 
estimating a non parametric trend 
estimation and a model based detrending 
method (linear detrending). It is shown that 
wavelet domain PLM is more sensitive to 
detect active voxel, but this comes in price 
of weaker false alarm rate control.
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Figure 1. fMRI time-series linear model, 

p(t)is the profile of stimuli, )(thi  is the 

hemodynamic response function at voxel i, 

ε(t)  is noise and artifact model and y(t) is 

observed data.

Figure 2. Activation levels profile in 
simulated time-series

)a(

)c()b(
Figure 3. Detected active voxels using 

different methods of deternding. (a) Linear 
detrending (b) time domain PLM (c) 

wavelet domain PLM

Table 1. Estimation variance of β  in rest 
data set.

PLM 

Wavelet Time-

domain

Linear 

Detrending

0.5285 0.5274 06512

Figure 4. False Detected voxel in Rest state 
data
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Figure 5. Detected active voxels using 
different approaches.

)(thi + )(ty)(tp )(tx

Hemodynamic 
system

)(tε

0

5

10

15

20

25

30

35

40

0.0001 0.001 0.002

Wavelet

Time domain

Linear

 ����� ���	
 ����� ������ ���������� 	���� ���  � �! � "# $%&'���� �()* + ,-��� 


