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ABSTRACT 
This paper presents a data fusion algorithm in a decision-
support system to identify potential candidates for surgery 
in temporal lobe epilepsy. To this end, multimodality 
images including magnetic resonance imaging (MRI) and 
single photon emission computed tomography (SPECT) 
are used to predict surgery outcome. Effective features 
such as hippocampus structure and texture are extracted 
and combined to make reliable decisions. The 
experimental results using a support vector machine 
classifier show that the proposed approach may reliably 
predict the surgery outcome. 
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1.  Introduction 
 
Epilepsy is recognized as an organic process of the brain. 
More formally, epilepsy is an occasional, excessive, and 
disorderly discharge of nerve tissue, seizure, which 
sometimes can be detected by electroencephalographic 
(EEG) recording. It is a complex disease caused by a 
variety of pathological processes that result in treatment 
selection difficulties. Pharmacotherapy or surgical 
treatments are the neurologist alternatives. Selection of 
the most appropriate treatment could change the patient’s 
life.  
Despite optimal pharmacotherapy about 20–30% of 
patients do not become seizure-free [1]. For some of these 
patients, surgery is a therapeutic option. Success of 
resective surgery has been estimated to increase from 
43% to 85% during the period 1986–1999 [1, 2]. A recent 
prospective randomized controlled trial of surgery for 
temporal lobe epilepsy showed that 58% of patients 
randomized to surgery were seizure-free compared to 8% 
of medical group [2].  
Surgery is considered a valuable option for medically 
intractable epilepsy even in the absence of a proven drug 
resistance; in addition, surgical outcome may be greatly 
influenced by the presence of selected prognostic 

indicators [3]. However, there are still uncertainties on 
who are the best surgical candidates, i.e., those who most 
likely will present good surgical outcome.  
In a recent narrative literature review of temporal 
resections, good surgical outcome was associated with a 
number of factors (hippocampal sclerosis, anterior 
temporal localization of interictal epileptiform activity, 
etc.) [2]. However, the published results were frequently 
confusing and contradictory, thus preventing inferences 
for clinical practice. Methodological issues were indicated 
by the authors as the most likely explanation of the 
conflicting literature reports [3].  
For this reason, a quantitative review of the available 
literature has been undertaken in [2] to assess the overall 
outcome of epilepsy surgery and to identify the factors 
better correlating to seizure outcome. The aim of the 
study was to perform a meta-analysis of the results of 
published observational studies and assess the prognostic 
significance of selected variables outlining the 
characteristics of the clinical condition, the correlations 
between the epileptogenic and functional lesion, and the 
type of surgical procedure. 
In such a complex problem, computer aided systems may 
help neurologists to make a more reliable decision. Using 
a database of other epilepsy cases, a soft computing 
algorithm may locate similar cases and with regard to 
previous experiences, propose a conclusive and supported 
suggestion for neurologist for upcoming cases. The most 
frequent factors among patients with similar surgery 
results are more likely to have effect on the decision.  
Several modalities are now available for detecting the 
structural and the functional abnormalities of a seizure 
focus. This article presents techniques that can be used to 
integrate the data derived from different imaging 
modalities. In particular, an approach is described for 
integrating MRI and SPECT data for determining 
epilepsy surgery candidates. 
The rest of the paper is organized as follows. Section II 
and III are devoted to data fusion and feature selection 
strategies.  In Section IV, HBIDS and the proposed 
training method are described. Simulation results and 
comparison of alternative methods are presented in 
Section V. Finally, the paper is concluded in Section VI. 
 



 
2.  Visual Data Fusion for Decision Making 
 
2.1.  Temporal Lobe Epilepsy Surgical Outcome  
 
The surgical outcome can be quite variable from case to 
case [4]-[5]. In most successful surgeries, the seizures 
completely disappear with non–disabling simple seizures 
during the first two years, and convulsions may appear 
only when medications are withdrawn. In some other 
cases, the primary seizure disappears but rarely some 
disabling seizures during the first two years may occur. 
Other patients may experience worthwhile seizure 
reduction and prolonged seizure-free intervals amounting 
to half of the follow-up period. In the worse case, there is 
no significant seizure reduction.  Therefore, prediction of 
the success of surgery is quite important in deciding 
whether the surgery is the best treatment. The main 
contribution of this paper is to provide an image fusion 
approach to predict the usefulness of surgery. The first 
step towards this goal is to identify effective features.       
Outcome after temporal lobectomy has been studied 
intensively in recent years. Reliable outcome data are the 
linch-pin on which surgical candidacy, patient 
counselling, and postoperative management are based, yet 
findings frequently conflict, making them difficult to 
interpret. This is not surprising, as research in this field is 
characterized by a variety of methodologic approaches. 
Accurate and effective interpretation of the body of 
knowledge regarding outcome after temporal lobectomy 
can be facilitated by an understanding of the approach to 
and practice of research in this area. 
Findings for each risk factor or preoperative variable 
analyzed in each article can be aggregated into five major 
groups according to general subject. These comprised 
clinical factors, electroencephalography (EEG), 
preoperative magnetic resonance imaging (MRI), 
preoperative functional imaging such as SPECT, 
operative factors, and histopathology findings.  

 
2.2. Data Fusion 
 
In a decision support structure, clinical features are 
combined to reach the final conclusion. If the features 
have a common unit, called commensurate features in the 
data fusion literature, the combination can be 
accomplished by the traditional weight summation. For 
epileptic clinical feature combination, feature vectors 
have no common unit, thus in the literature, some feature 
vector concatenation algorithms have been proposed. To 
provide an explicit control over how much each vector 
contributes to the final decision, usually a weight vector is 
applied to the concatenated feature vector. 
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The weight vector is selected subject to classification 
performance optimization [7]. In the current case, the 

weight vector is used to maximize between classes to 
within classes distance ratio: 
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where Fi
w represents set of feature vectors in the i-th class 

weighted by W and Dis is between class to within class 
ratio function where the Euclidean distance is used as the 
feature space distance measure [7]. For example, the first 
class could be appropriate surgery candidates while the 
second one is non-surgical treatment preferred patients.    
 
2.3. Hippocampus 
 
In temporal lobe epilepsy, hippocampus is the key 
structure in MRI. An expert marked a region of interest 
(ROI) around hippocampus area using brain landmarks. 
ROI is a polygon with more than four vertices: 
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The mesial border of the ROI was chosen as a fixed 
landmark obtained by extending a straight line from the 
ventral most point of the circular sulcus to the upper 
portion of the parahippocampal gyrus. The lateral limit of 
the ROI extended to the centre of the temporal lobe white 
matter (Fig. 2-a).  
To obtain the anatomical features, this polygon is used to 
generate the nearest ellipse covering hippocampus in each 
slice on each side (Fig. 2-b). Each ellipse is characterized 
by three parameters (a, b and θ): 

 
Fig. 1.  Non-commensurate data fusion diagram. 
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and x0 and y0 are the mean of the polygon points (Figure 
3). A principle component analysis could obtain these 
parameters easily. 
These ellipses represent 3D model of hippocampus. 
Lower number of parameters in this model eases shape 
encoding, feature extraction and information processing 



in difference patients.   The parameters are normalized to 
the total volume of the brain. 
 
3.  Feature Selection and Classification 
 
3.1. Features Selection 
 
Based on a review of many articles, abnormal 
hippocampus anatomy in MRI, tissue properties, 
functional properties and difference between two epileptic 
sides are the main visual factors in surgery decision.  
Actually, firm conclusions cannot be drawn for the extent 
of resection, EEG/MRI concordance, and post-operative 
discharges for the heterogeneity of study results [6]. 
In a previous work [11], we examined non-visual 
information fusion, where personal information, patient 
history, and diagnosis information were the main features. 
This paper is devoted to the imaging features.  
Using the elliptic 3D-model, most important hippocampus 
anatomical features are calculated. These features include 
hippocampus total normalized surface area, average of 
absolute difference between a parameters and also b 
parameters in different slices and average of a/b ratio. In 
[12], a wavelet based hippocampus texture representation 
is described. According to the results, energy levels of D20   
wavelet bases with two levels of decomposition are the 
most discriminative features (four features for each slice). 
In addition, entropy features described in [12] are used, 
but in the second level of importance. For functional 
features, averages of SPECT intensity and variance vector 
are considered. In this method, the mean intensities of the 
ictal and interictal SPECT images are normalized to a 
standard value. Finally, the energy features of the 
difference between the two hippocampi images are used 
to quantify the difference between the normal and 
abnormal sides. 
 

 

 
Fig. 2. A. Hippocampus polygon ROI is marked by an expert in the 

MRI-T1 coronal image.  B.  Nearest ellipse to ROI is obtained.   

All of the features are concatenated using II.B process 
into a feature vector with 19 elements.   
 
3.2. Feature Reduction  
 
Obviously, the above described feature vector is too long. 
To find most important components, some features are 

combined using linear regression to reduce the feature 
vector dimension.  Orthogonal least squared process is 
used to combine features [7] and extract the best five 
combined features.    
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Fig.  3. Proposed algorithm finds the nearest ellipse to a polygon using 

principle algorithm anlysis.  

 

3.3. Classification  
 

Medical classification accuracy studies often yield 
continuous data based on predictive models for treatment 
outcomes. The sensitivity and specificity of a diagnostic 
test depends on more than just the "quality" of the test--
they also depend on the definition of what constitutes an 
abnormal test.   A popular method for evaluating the 
performance of a diagnostic test is the receiver operating 
characteristic (ROC) curve analysis [8]. ROC is a plot of 
the true positive rate against the false positive rate for the 
different possible cut-points of the classifier. Each point 
of the ROC curve is obtained by finding the true positive 
rate when the decision threshold is selected based on a 
specific false alarm rate.   
The area under the ROC curve represents accuracy of a 
classifier. In medical problems, false alarm rate as well as 
false rejection rate should be lower that pre-specified 
limits. The trade off between false alarm rate and false 
rejection rate is problem specific. 
 
 
4. Dataset Preparation 
 

4.1. HBIDS 

 
Human brain image database system (HBIDS) is under 
development for epilepsy patients at Henry Ford Health 
System, Detroit, MI [9, 10]. The proposed HBIDS will 
examine surgical candidacy among temporal lobe 
epilepsy patients based on their brain images and other 
data modalities. Moreover, it can discover relatively weak 
correlations between symptoms, medical history, 
treatment planning, outcome of the epilepsy surgery, and 
brain images. The HBIDS data include modalities such as 
MRI and SPECT along with patient’s personal and 



medical information and EEG study [10]. The data has 
been de-identified according to HIPPA regulations [9]. 

For each patient, the database contains the MRI T1, T2, 
FLAIR, co-registered SPECT images, and 3D 
hippocampus model as well as non-visual information 
[10]. 
In this research, only the visual information has been 
used. Each patient’s data is represented by a feature 
vector with five elements and a value that represents the 
surgery outcome (for the patients with only 
pharmacotherapy, surgery is assumed to be unnecessary). 
The features include hippocampus anatomical, texture and 
functional features. [6]. In some cases, patients’ 
information is not complete. In the training phase, missing 
data are filled by the average of the other patients in the 
same class. In the testing phase, they are filled by the 
average of the entire available data. Thirty-five patients 
with temporal lobe epilepsy who have undergone 
temporal lobectomies at Henry Ford Health System are 
selected for the study. The initial pre-surgical evaluation 
of the epileptic patients includes history and neurological 
examination. 
 

4.2. Training Method  

 
For most efficient use of the data, training and test sets are 
not separated. In each training epoch, 4/5 of the patients 
are randomly selected to train the classifier. The rest of 
the patients (1/5) are used to test. The final classifier is the 
average of many training processes. This training strategy 
provides maximum database usage efficiency at the cost 
of higher computational complexity. In this experiment, 
more than 50 train-test sets are used. The training process 
terminates when the classifier’s mean squared error of the 
test-set increases in the two last epochs.  
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Fig. 4. Receiver-operating characteristic (ROC) curve plotting sensitivity 
versus specificity for different classifiers. The area under ROC curve for 

LS-SVM is 0.921.  
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Fig. 5. Feature vector disturbance effect on classification error when the 

sum of false alarm and false rejection rates are minimal.  
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Fig. 6. Registration accuracy effect on performance; A.  Rotation effect 
and B. shift effect.   

 
 
 
5. Experimental Results and Discussions 
 
Averages of six slices (range = 5 to 7) were used to 
calculate left and right temporal lobe WM FLAIR 
relaxation times (WM-FLAIR) and left and right 



hippocampal FLAIR relaxation times (Hippo-FLAIR). 
The study is conducted on 16 patients from the HBDIS 
datasets. 
For each slice, FLAIR values were measured by placing 
its largest possible ROI within the anatomical boundaries 
of the hippocampus and temporal lobe WM on coronal 
slices.  
In this research, a support vector machine (SVM) 
classifier is used. Training process is terminated in SVM 
network based on the testing curve to prevent over-
training. To verify the classifier’s accuracy, ROC curve 
are generated and shown in Fig. 4. In each case, four 
points of the ROC curves are calculated. The area under 
ROC curve for LS-SVM is 0.921. The lowest sum of false 
alarm and false rejection rates is around 10% 
classification error (Fig. 4).  
Due to the usual artifacts in medical features, medical 
decision support algorithms should have good disturbance 
robustness. To this end, using the ROC curve, the 
decision threshold corresponding to the minimum 
summation of the false alarm and false rejection rates is 
chosen (Fig. 4). A Gaussian white noise is added to MRI 
and SPECT images. The error curves are obtained by 
averaging the results of 10 experiments (Fig. 5). Note that 
the white noise with higher that -15dB power may 
significantly decrease classifier performance. This noise 
affects texture and anatomical features. SPECT image 
noise did not destroy performance because the functional 
features are more robust against white noise and also 
there are less important in the final decision. Based on the 
above simulation results, SVM seems to be a good 
alternative for epilepsy prediction problem in high MRI 
SNR condition. 
Finally, we evaluate the performance of the algorithm in 
the presence of mis-registration. Fig. 6 shows the decision 
system performance when the images are shifted or 
rotated against detected hippocampus. The algorithm 
remains stable under 0.05 rad rotation and 0.5 mm shift. 
However, the results degrade with larger rotations or 
shifts. Hence, although the proposed algorithm is not very 
sensitive to the registration accuracy, accurate registration 
is crucial for obtaining the best performance from the 
system. 
 
    
6. Conclusion 
 
In this paper, we have proposed a data fusion algorithm to 
predict temporal lobe epilepsy surgery outcome. This 
method concatenates MRI and SPECT believed to have 
strong contributions to the surgery outcome. To extract 
anatomical properties of hippocampus, a 3D elliptic 
model is proposed. The results show that the algorithm 
predicts whether the surgery is the best solution for a 
patient in more than 90% of the cases. In addition, the 
ROC analysis and feature vector distortion studies have 
shown that the SVM method is robust for this particular 
application.  
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