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Abstract: This paper presents a new clustering method 

based on Renyi entropy. The proposed method maximizes 

entropy of clusters using between and within clusters 

entropies. It is a top-down multi-resolution method and 

uses the initial clusters found by Fuzzy C-Means. 

Applications of the proposed algorithm on the synthetic 

data are compared with those of C-Means and Gustafson-

Kessel algorithms. Results show superiority of the 

proposed algorithm to these methods. 
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1. Introduction 
Clustering is an important tool for pattern recognition; it 

is an unsupervised approach for splitting data into its 

natural groups. Clustering has extensive applications in 

image segmentation and compression, machine learning, 

and remote sensing and data mining [1]-[3]. In recent 

years, several clustering methods based on artificial 

neural networks [4] and support vector machines [5] have 

been developed that are talented to identify clusters with 

any shape and without knowing the correct number of 

clusters. However, these methods are often very complex 

and necessitate perfect association.  

Clustering depends on data structure and information 

theory is a useful tool for mining data structures. In this 

paper, a novel hierarchical algorithm is presented, which 

is based on Renyi’s entropy and applied for clustering. 

The advantages of the proposed algorithm compared to 

Gokcay and Jenssen algorithms [6]-[9] are its higher 

speed and stability. The novelties of the proposed 

algorithm are: a) using an improved factor in detecting the 

worst cluster for clustering enhancement, and b) using 

Fuzzy C-mean clustering as the primary clustering for 

decreasing computational complexity and increasing 

stability. 

In the next section, Renyi’s entropy is introduced and 

the reason behind its usage is described. In Section 3, the 

proposed algorithm is presented. The method for finding 

the worst cluster and allocating data points to clusters 

with differential entropy and the initial clustering method 

and also a technique for finding the ultimate clustering are 

expressed in this section. In Section 4, the experimental 

results are presented. Conclusions are given in Section 5. 

 

2. Renyi’s Entropy 
Renyi defined entropy with order as [10]: 
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which becomes Shannon’s entropy when 1 . The main 

application of Renyi’s entropy is when 2 , where it is 

also called quadratic entropy and can be written as [10]: 
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Therefore, the Renyi’s quadratic entropy can be computed 

from the Gaussian functions summation based on the 

differential between data point pairs. The term inside 

phrase in the logarithm function of equation (2) is named 

information potential: 
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Since computing Renyi’s entropy for data points of a 

dataset is very easy, it has been utilized as a criterion for 

clustering in the proposed algorithm. 

 

3. Proposed Clustering Algorithm 
The proposed algorithm has two main steps: a) finding the 

worst cluster among the existing clusters and splitting it 

into its constructing data points. b) Allocating the 

extracted data points from step (a) to the remaining 

clusters. These steps are repeated until an acceptable 

clustering is attained. 

 

3.1 Finding Worst Cluster 

In any iteration of the proposed top-down hierarchical 

algorithm, one of the clusters is eliminated and its data 

points are allocated to the remaining clusters. There are 

numerous methods for finding a cluster to be vanished, 

which one of them is selecting a cluster randomly from 

the clusters. Another technique is choosing a cluster that 

has the maximum inter-coordination (variance). Both of 

these methods are not capable to distinguish data 

structures and select the actual worst cluster. In the 
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proposed algorithm, between clusters entropy is used for 

finding the worst cluster; this measure, first proposed by 

Gokcay et al [6], [7], is:  
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Elements of matrix  )( ijxM  are zero when kji Cxx ,  and 

one otherwise. One of the difficulties in utilizing equation 

(5) is selecting , this will be addressed in Section 3.e. 

As the clusters are moved away from each other, V will 

decrease and between cluster entropy, H will increase. 

The worst cluster that is the best candidate for being 

eliminated has the maximum amount of between cluster 

entropy. 

For finding the worst cluster, between clusters 

entropy is computed in the absence of a desirable cluster 

for each of the data clusters. First, each cluster is 

eradicated and between clusters entropy is calculated for 

the rest of the clusters by (5). The worst cluster is 

established as the cluster that offers the maximum amount 

of entropy or minimum amount of information potential: 
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The most important problem of the above method is the 

clusters that are copious centralized with a low number of 

data points. These clusters merge with a low possibility 

with other clusters and usually reside as autonomous 

islands. In computing entropy in the absence of this kind 

of clusters, information potential is increased; so they are 

not detected as a worst cluster. For solving this problem, 

the number of data samples of a cluster is used as a 

multiplicative factor in the entropy calculation. 

Experiments show that this multiplication factor 

facilitates for enhanced clustering and prevents the 

algorithm from trapping in local minimum. So the 

improved version of (7) is given by multiplying the 

information potential by the number of clusters with 

power : 
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Experiments show that the best results are achieved 

for 2 . After finding the worst cluster, it is vanished 

and its data points label are removed. 

 

3.2 Proposed Method for Allocating Free Data Points 

After finding the worst cluster and removing the data 

point labels, each of the freed data points are 

independently allocated to one of the rest of the clusters 

by differential entropy.  

 

3.2.1 Clustering Based on Differential Entropy 

Any data point that is attached to a cluster would increase 

uncertainty or entropy of that cluster. When a data point is 

properly assigned to a cluster, its entropy will be 

increased less than if it is adjoined improperly to another 

cluster. This idea suggests a new method; a data point is 

allocated to a cluster that its entropy is minimally 

increased compared to the other clusters. The following 

equation finds this cluster. 
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which requires computation of the within cluster entropy. 

 

3.2.2 Within Cluster Entropy  

This criterion is similar to the between cluster entropy; the 

main difference is that within cluster entropy shows 

entropy among data pairs of a single cluster but between 

cluster entropy computes entropy among data pairs of 

different clusters. The within cluster entropy for data 

points of a cluster is defined by the following equation: 
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For fast computation of within cluster entropy, the 

elements of the matrix G are computed for all pairs of 

data samples and saved in the beginning of the algorithm; 

then simply using general matrix operations, equation 

(10) is calculated. Within cluster entropy can be 

calculated from the complete matrix G: 
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Elements of matrix )( ijxM   are one when kji Cxx ,  and 

zero otherwise. This fast method can be also utilized for 

calculating between cluster entropy.  

 
3.2.3 Ordering of Free Data Points for Clustering 

The order of choosing free data points of the eliminated 

cluster for a new clustering is important; randomly 

choosing them might make the clustering algorithm 

unstable. For this purpose, a method is needed for 

appropriate ordering of the free data points. One simple 

method is updating the changed cluster after the data point 

allocating process.  This method stabilizes the clustering 

process but it might fall into the local minima. In the 

proposed algorithm, the arrangement of free data points is 

upon the nearest free data point to data points of the rest 

of the clusters. The changed cluster after allocating any 

data point will be updated and this operation will be 

repeated until the last free data point of the vanished 

cluster. This method decreases the probability of trapping 

in the local minima and the clustering will become stable. 

Figure 1 shows an iteration of the proposed algorithm. 

 

3.3 Initial Clustering 

In the proposed algorithm, Fuzzy C-means clustering is 

used as initial clustering. The advantage of this method is 

its faster execution compared to Jenssen et al’s method; it 

benefits from multi-resolution concept. This method 

guarantees the convergence and transfers data points to 

plenty of clusters, each with a few data points. The 

number of clusters in initial clustering depends on the 

number of data points and the final number of clusters 

expected. It is clear that increasing the number of dataset 



points or increasing the number of final clusters will 

increase the number of clusters in the primary clustering. 

 

 

 
Figure 1: One step of the proposed algorithm and reduction of one 

cluster and allocating its data point to the remaining clusters. 

 

 

3.4 Final Clustering 

The proposed algorithm begins from a large number of 

clusters and in each step of the algorithm, one cluster is 

vanished and this operation is repeated until two clusters 

remain. If the clustering is stored in each iteration, then a 

hierarchical clustering from N primary clusters to two 

clusters is available. At last, the perfect clustering is 

selected from the stored clustering at each step. 

It is difficult and sometimes impossible to determine 

the number of clusters accurately. There are several 

methods that can estimate the number of final clusters. 

One of them uses between scatter matrix. When the 

number of clusters reduces, the size of the clusters 

enlarges and the trace of between scatter matrix increases. 

When the rate of increasing diminishes, the process stops. 

Another efficient way, utilized by Jenssen et al [8], [9], 

uses between cluster entropy for finding the number of 

final clusters. This criterion increases when the number of 

cluster reduces; so the final clustering is chosen when a 

high disparity is seen from one step to the next. 

 

3.5 Method for Choosing   

One of the main issues of the proposed algorithm is 

choosing   in equation (5). By choosing  as a small 

quantity, a high attention is given to clustering of close 

data points and by selecting   as a large value, an 

attention is given to clustering of far data points. Different 

data need different values for ; unfortunately, there is 

not a particular method for choosing  . A simple 

method for estimating   is defined by the following 

equation [11]. 
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This equation sets   equal to the minimum   in the 

direction of one of the features.  

 

4. Experimental Results 
To evaluate the proposed algorithm and compare it with 

other algorithms, several experiments are done. In the 

following subsections, we present 3 illustrative examples. 

 

4.1 Standard Synthetic Data 
Figure 2 shows the clustering results for a standard dataset, 

where the clusters are not mass prototype clusters. Note 

that neither C-means nor Gustafson-Kessel algorithms 

[12] are able to detect shell prototype clusters, but the 

proposed algorithm is able to detect line and shell 

prototypes properly. To ensure how the final clustering is 

achieved, in figure 3 the quantity of between cluster 

entropy is plotted for all steps of the proposed algorithm 

on the dataset in Figure 2. Since there is a large variation 

in clustering between two and three clusters, the final 

number of clusters is set to two. 

 

 

 
Figure 2: Clustering a dataset with two shell prototype clusters.  

 

 

 

 
Figure 3: Between cluster entropy for the dataset presented in Figure 2. 

 

 

4.2 Centralized Synthetic Data 

Figure 4 shows clustering results for a dataset with a huge 

number of data samples and centralized clusters. Note that 

the proposed algorithm outperforms both of the C-means 

and Gustafson-Kessel algorithms.  

 

 



 
Figure 4: Clustering a dataset with four centralized clusters.  

 

 

4.3 Synthetic Particular Data 
Figure 5 shows a dataset with combined centralized and 

regionalized clusters. Note that the proposed algorithm is 

able to recognize regional clusters with any degree of 

distraction from centralized clusters by changing the value 

of .  Also, note that it outperforms the other methods. 

 

 
Figure 5: Clustering a dataset with five centralized and one regionalized 

clusters. 

 

 

5. Conclusions 
In this paper, a new top-down hierarchical method is 

proposed for data clustering based on information theory 

and Renyi’s entropy. The proposed algorithm uses 

between cluster entropy and within cluster entropy for 

removing one cluster in each step. The proposed 

algorithm detects different structures of clusters (mass, 

shell, and linear clusters) and outperforms the C-means 

clustering and Gustafson-Kessel algorithm. The proposed 

algorithm is compared with recent information-based 

algorithms using Renyi’s entropy, like Jenssen et al 

method and Gokcay et al method.  The proposed method 

has a higher speed of execution and has solved the 

convergence problem. Experiments using the proposed 

algorithm are done on the synthetic datasets. The results 

show the effectiveness of the proposed algorithm. We 

show that this algorithm is able to cluster both highly 

distracted clusters and centralized clusters. 
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