
 
 
 
Knowledge-based Segmentation: Using Simultaneous Shape Priori and Histogram 

Information to Segment Brain Structures  
 

          
Nematollah Batmanghelich1,2 , Hamid Soltanian-Zadeh1,2,3, Babak Najaar Araabi1,2  

1Control and Intelligent Processing Center of Excellence, Elec. and Comp. Eng. Dept., Faculty of Engineering,  
University of Tehran, Tehran, Iran 

2School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran 
3Image Analysis Lab. Radiology Dept., Henry Ford Health System, Detroit, Michigan, USA 

E-mails: k.batman@ece.ut.ac.ir, {hszade,araabi}@ut.ac.ir 
 

 
ABSTRACT 
In this paper, we propose a new method integrating both a 
priori shape information and our knowledge about gray 
levels of the desired structure. We describe an approach 
inspired from tracking to deal with non-uniform gray 
levels. We define focus region to consider both interior 
and exterior of the desired object. We utilize signed 
distance function to consider shape information. 
Embedding a priori shape and gray level knowledge in a 
statistical platform, we use correlation between changes in 
shape and histogram to improve the results. Our method 
successfully segments Thalamus and other brain 
structures.  
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1.   Introduction 
 
Proposed by Osher et al [1], a category of geometric 
deformable models, also known as level set, has had 
enormous impact on medical image analysis in different 
areas ranging from segmentation to shape analysis. 
Although different kinds of deformable templates have 
been suggested so far (Kass et. al [2], Cootes et al [3], 
etc.), it is rare to see both topology preservation and fast 
shape recovery in a single platform. Level set methods 
may be categorized into two main classes: “level sets 
without regularizers” and “level sets with regularizers” 
(for a good survey, see the article by Suri et al [4]). 
Shape-based level set, first proposed by Leventon et al 
[5], is a level set with regularizer. They added a new term 
to the conventional level set partial differential equation 
to consider shape information. They estimated shape and 

pose parameters under maximu m a posteriori probability 
framework (MAP). However, they did not consider gray 
level information of the desired structure. In addition, 
they tested their method for structures such as corpus 
callosum, which is easily distinguishable in sagittal brain 
in MRI. Furthermore, inasmuch as they used an edge-
based approach, their method has the limitations of the 
edge-based methods. Tsai et al [6] and Yang et al [7] 
proposed mutual information-based and neighbor 
constrained level set methods based on Leventon’s work. 

We propose a new method inspired from tracking 
problems. We define a focus region to consider certain 
neighboring pixels outside the desired structure. Due to 
the imaging and anatomical impacts, there may be 
correlations between shape of the structure and its 
histogram. We consider correlations between structure 
histogram and shape. We evaluate our method on 
Thalamus, a challenging structures for segmentation, 
which has a key function in the sensory system [8]. Its 
specifications like volume and intensity in MRI are 
expected to change by certain neurological diseases [9]. 
We involved other gray nuclei that are straightforward to 
segment to benefit from them in the segmentation of 
Thalamus.  
 
2.   Proposed Method 
 

Our proposed method consists of three major steps: 
1) preprocessing; 2) shape vector extraction; and 3) final 
segmentation.  
 
2.1 Preprocessing 
 

Before we extract shape information, some 
preprocessing steps are required. As seen in Fig. 1, 
preprocessing steps are: 1) preprocessing of the image 
histogram; and 2) image alignment. Preprocessing is done 
to eliminate the effect of imaging equipment gain and 



 
Fig. 1. Schematic of the proposed algorithm. Left part shows preprocessing stages while right part represents shape vector extraction. 

Str.#n denotes the n-th structure. Red graphs symbolize the interior and green graphs symbolize the exterior histogram. Vectorize blocks 
convert matrices to vectors. 

 
 
other factors. Data alignment is  done to extract real shape 
variation due to the anatomical changes and not those 
caused by misalignment. 

We first normalize brain images to predetermined 
mean and standard deviation. Then, we ask an expert to 
segment the desired structures.  

To align data samples to eliminate pose parameters 
effects, we use the method proposed by Tsai et al [10]. 
This approach possesses the following features: 1) it 
jointly aligns different shapes within a particular shape 
class; and 2) it performs  alignment for all shape classes 
simultaneously. 

Assume there are M  segmented structures in the 
image which we would like to align to their 
corresponding structures . We encode each structure as a 
binary vector using 1 to indicate inside of the structure 
and 0 its outside. Therefore, we have vectors 

TM
i

m
iiii ]|||||[ 21 νννν LL=?  in which i  indicates the 

number of the sample  in the dataset ( Ni ≤≤1 ) and m  
denotes the number of the structure in the image. We find 
N vectors containing pose parameters. In 2D, the pose 

vectors are shown as T
yx stt ][ θ=p  in which yx tt ,  are 

the x and y translations and θ,s are the scale and rotation 
parameters, respectively. Transformed binary vector are : 
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The transformation matrix ][pT is the product of 

three matrices: ),( ytxtM  to translate, )(sS  to scale, and 

)(θR to rotate the image. 
To consider differences between all of the structures 

and all of data samples, we use the following cost 
function [10]:  
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where Ω  denotes the images domain. As stated in [6], 
the normalization term in the denominator of (2) prevents 
shrinking of the structures. We employ the gradient 
descend method to optimize the above cost function. 



2.2   Shape vector extraction 

Given aligned binary shapes vectors, we construct shape 
parameters. First, we calculate signed distance function 
from binary segmented images [14]. Then, we extract 
gray level histogram of the desired structures. We define 
two kinds of histograms for each structure: 1) the interior 
histogram for the pixels inside the structure; and 2) the 
exterior histogram for pixels outside the desired structure. 
Interior histogram is described: 
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where K , )(⋅H , and )(xψ  are the Gaussian kernel, used 

in the Parzen estimator, and the Heaviside and signed 
distance functions, respectively.  Same as the 
conventional level set, negative numbers are used for the 
inside of the desired structure.  

Owning to the fact that assuming one Gaussian 
distribution for all of the exterior pixels is  not a 
reasonable assumption, we define the following focus 
region so that the points farther from the boundary have 
smaller effects. 
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where a  determines the effective focus. 
Assuming we have N data samples and each one 

contains M structures, we have a signed distance function 
and two histograms for each of the M  structures. Using 
the results, we construct the following vectors. 
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where 1l and 2l are the numbers of bins in the interior and 

exterior histograms and P and Q are the number of pixels 

in the x and y directions, respectively. 
m
i?  is the signed 

distance map for the m-th structure in the i-th data sample  

and 
m

ioutin ,/h  contains the histogram values for the interior 

and exterior of the m-th structure in the i-th data sample. 
Given a tall rectangular shape vector for each data 
sample, we define the following matrix.  

][ 1 Ni ???X LL=   (6) 
We subtract mean vector ( ? ), which is averaged on 

all available shape vectors, to obtain normalized data 
samples ( X

~ ). Due to the fact that there is a very large 
 

number of rows in X
~ , we use its transpose for singular 

value decomposition (SVD). 

TT

N
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   (7)  

where Y  contains the eigenvectors of XX ~~1 T
N

and S  is a 

diagonal matrix with the corresponding eigenvalues. It 
can be shown that if y  is an eigenvector of XX ~~1 T

N
, 

yXu ×=
~  is the corresponding eigenvector of T

N XX
~~1 .  

Choose t  most significant modes to represent the 
data, we represent the shape vector as: 
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where Û is a rectangular matrix containing t  selected 
eigenvectors and Ŝ  is a diagonal matrix with the 
corresponding eigenvalues.  

2.3   Histogram-based segmentation model 

Because the aforementioned formulas do not 
accommodate changes caused by the pose parameters, we 
embed pose parameters with (8). To this end, we use the 
strategy which we applied for image alignment: 

[ ] [ ]TT

mmm

yxTyx

Mmyxyx

1][1ˆˆ

1,ˆˆ)ˆ,ˆ(),(

p

bSU

=

≤≤××+= ψψ)

(9) 

where ][pT  is defined in (1), mÛ is a rectangular matrix 
with the eigenvectors of the m-th structure’s signed 

distance function, and ),( yxmψ is the mean vector 
rearranged into rectangular shape. 

For accurate segmentation, we need to define a cost 
function to be optimized. To this end, we compare the 
histogram gathered during the training process to the 
calculated histogram obtained from the target image. We 
then consider the correlations between the structures 
shape and exterior and interior histograms . To compare 
two histograms, we use Bhattacharyya coefficient, a 
popular measure in tracking purpose [15]. 

Given )(uh  and )(ˆ uh , distributions of the gray 
levels for a specific region of the estimated and target 
images, respectively, Bhattacharyya coefficient is defined. 

∫= duuhuhhh )(ˆ)(),( *ρ    (10) 
where u  is index of histogram bins. Based on the above 
definition, we specify distance between histograms as:   

)ˆ,(1 hhd ρ−=    (11) 
To simplify the calculations, we use squared distance 

and define the following cost function. 
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Fig. 2. (a) The effects of the first five eigenvalues on the structures shapes are shows. The overlaps are due to the large values of the 

biggest eigenvalue. (b) The effects of the biggest eigenvalue on the interior and exterior histograms of the three structures are shown. Blue 
lines denote interior histogram and red lines represent exterior histogram. For this figure, we assumed 2=σ  for the Gaussian Kernel in the 

Parzen estimator and 05.0=a for the focus function. 

 
In order to optimize the above functions using either 

the steepest descend or the conjugate gradient, we need its 

derivation. Gradient of HistMatchE  in respect to tb and p  

are: 
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The k -th elements of the gradient vector ρp∇  and ρb∇  

are given by: 
(14) 
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Using the steepest descend method, update equations for 
the parameters are: 

(17)  
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3 Experimental Results  

We tested our method on real T1 magnetic resonance 
images from the Internet Brain Segmentation Repository 
(IBSR) [12]. Each volume contains 128 slices in the

 



 
Fig. 3. (a) Coarse initialization of the contours. (b) Final results. (c) Manually segmented results. 

 

Table 1. Results of 3 cases. White blocks show the initialization results and gray blocks show the final results. The values outside the 
parantesis are the Hausdorf distances and the values inside the parantesis are the overlapping measure. 

Right 
Thalamus 

Left 
Thalamus 

Right 
Putamen 

Left 
Putamen 

Right 
Caudate 

Left 
Caudate 

 

5.2(64%) 4.89(61%) 5.13(22%) 4.42(26%) 5.0(20%) 4.0(47%) 
1.18(96%) 0.81(93%) 1.04(88%) 0.63(94%) 0.78(92%) 1.24(83%) 

Case1 

3.97(64%) 4.45(64%) 4.1(32%) 3.99(42%) 2.92(64%) 3.82(47%) 
1.1(80%) 1.19(88%) 1.05(81%) 0.81(82%) 0.8(88%) 1.02(80%) 

Case2 

2.28(83%) 2.67(84%) 2.07(68%) 2.6(65%) 1.23(86%) 1.06(89%) 
0.77(93%) 1.12(96%) 1.02(82%) 1.19(84%) 0.59(96%) 0.53(95%) 

Case3 

 
 

coronal plane. The slice thickness is 1mm and the image 
matrix size is 256x256. The distance between each two 
pixels is 0.93mm. Using the nearest neighbor method, the 
coronal slices were interpolated to construct the axial 
images. 

In the preprocessing step, we chose 31 axial images 
to derive averages for the mean and standard deviation. 
For the exterior focus region, we set 05.0=a  in (4). To 
minimize the algorithm execution time, we neglected 
points with focus weights less than 0.1. We used 256 bins 
histograms for the interior and exterior regions 
( 25621 ==ll ). 

Considering the image size (256x256), the number of 
structures (M=3), and the histogram bins, the dimension 
of shape vectors are about 198,144. We chose 20 most 
important eigenvectors ( 20=t ) as their corresponding 
eigenvalues contain 92% of the sum of all eigenvalues. 
We constrained elements of b  to σ4.0  to avoid conflict 
(see the upper most right in Fig. 2a). Moreover, we set the 
negative values of the histograms to zero (see Fig. 2b). 

We evaluated our method using three slices of three 
different patients, not used in the training phase. As seen 
in Fig. 3, segmentation was started from a rough 
initialization defined by the atlas. Although initial 

contours may seem accurate near Caudate, they are not 
accurate for Thalamus and Putamen. Taking advantage of 
the reasonable initial contour for the Caudate in addition 
to a priori information about the interior and exterior 
histograms of the desired structures and their shapes, our 
model generated accurate results. Because we based our 
method on both of the gray level information and the 
shape knowledge, it was neither distracted by the gray 
level of cortex pixels (Putamen) nor their heterogeneity 
(Thalamus). 

To evaluate the algorithm's performance 
quantitatively, we used two measures: 1) Hausdorf 
distance of the boundaries; and 2) the common area 
between two regions: 

ba
N

BAhABhBAhBAH
Aa BbA

−== ∑
∈ ∈

min
1

),()),,(),,(max(),(

(18) 

)(
)()(

BArea
BAreaAArea

Similarity
I

=    (19) 

where A and B are sets containing the boundary points of 
the automatically segmented and manually segmented 
regions, respectively. Table 1 shows the final result of our 
algorithm.  



4 Conclusion 

We have proposed a novel method to most efficiently 
use both of the shape priori and histogram information of 
the desired structure in its segmentation. Our method 
shares common features with the Active Appearance 
Model (AAM) proposed by Cootes et al [13] in that both 
methods use shape priori and gray level information of 
the desired structures. However, our approach has 
advantages such as robustness against landmarks 
inaccuracies as it does not use them; it uses the signed 
distance function instead. Our method is also related to 
the Tsai et al method [6], which uses the signed distance 
function to exploit the shape priori. However, we tested 
our method on a challenging structure (Thalamus), which 
they did not. Our histogram-based method is related to 
that of [7]. However, we only considered the pixels in a 
focus region instead of considering all of the exterior 
pixels.  

The complicated equations used in the gradient 
descend method can be avoided if a numerical method is 
employed. We tested the BFGS Quasi-Newton numerical 
method with a mixed quadratic and cubic line search 
procedure, which worked well for our application. 
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