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ABSTRACT 

Because of poor signal-to-noise ratio (SNR) of the fMRI 

time series and confounding effects, the results of fMRI 

analysis are often unsatisfactory. Existence of significant 

noise and artifacts in fMRI time-series as well as their 

unknown structure, complicates the problem of activation 

detection in the time domain. This makes the fMRI noise 

suppression a challenging problem. Based on some 

assumptions, different parametric denoising methods such 

as wavelet based denoising methods have been introduced 

in the literature. But these assumptions may not 

necessarily hold for the fMRI data. To remedy this 

problem, using randomization analysis, we propose a 

novel wavelet-based denoising method for fMRI analysis. 

The proposed denoising method is employed to build a 

feature space for fMRI cluster analysis and its efficiency 

is shown using simulated and experimental datasets. 
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1.  Introduction 
 

A variety of analysis methods have been developed for 

detecting brain activations in fMRI [1]-[4]. However, due 

to poor signal-to-noise ratio (SNR) of fMRI time series 

and existence of significant noise and confounding 

effects, fMRI time series often need preprocessing. 

Denoising, is an important preprocessing step which is 

usually done via Gaussian smoothing. But smoothing 

changes the intensity variation of the underlying image. 

This suppresses, or even removes, detailed features of the 

original image. Wavelet-based denoising has the 

advantage over low-pass filtering that relevant detail 

information is retained, while small details, due to noise, 

are discarded [5]. The problem in using these denoising 

methods for fMRI data is that these general denoising 

methods are based on assumptions such as Gaussian 

noise, which may not necessarily hold for the fMRI data 

because the structure of fMRI noise in unknown and still 

is an open problem [6]. To remedy this problem, we 

introduce a non-parametric wavelet-based denoising 

method. Making no specific assumptions, using 

randomization analysis, we estimate the distribution of the 

wavelet coefficients under the null hypothesis (no 

activation) and eliminate the coefficients corresponding to 

noise. The efficiency of the proposed denoising method is 

examined in this feature space by analyzing the simulated 

and experimental fMRI datasets.  

 

 

2.  Materials  

 
2.1 Finger Tapping fMRI Data 

 
Functional images were acquired from 6 normal 

volunteers using a T2
*
-weighted gradient echo single-shot 

EPI sequence (TR=3 sec, TE=50 ms, FOV=250250100 

mm
3
, matrix size=646420) on a 1.5 Tesla Siemens 

Vision MRI scanner. The subjects performed a finger to 

thumb opposition task. The task consisted of 4 periods of 

84 seconds, where each period contained 30 seconds of 

left hand finger opposition, 12 seconds of rest, followed 

by 30 seconds of right hand finger opposition, and another 

12 seconds of rest. A 3D high-resolution anatomical 

image volume was also acquired from each subject. 

 

 

2.2 Simulated fMRI Data 

 
For a realistic simulation of fMRI data, computer 

generated “activation” time-series were added to the 

measured time-series of a single slice from a resting state 

experimental fMRI data. The “activated” areas have 

different sizes (3, 6, 8, and 12 pixels) and different 

contrasts (1%, 1.5%, 2%, and 2.5%). The simulated 

activation time-series consisted of 252 points obtained by 

convolving a stimulation pattern with the hemodynamic 

response function (HRF) modeled by Gamma function 

and then adjusting its amplitude to the desired contrast.  
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3.  Methods 

 
Existence of significant noise and artifacts in the fMRI 

signal complicates the problem of activation detection in 

the time domain. We use a wavelet decomposition of the 

signal followed by a denoising procedure to decrease the 

influence of these interfering components. To suppress 

the noise effect in a non-parametric manner, we use the 

randomization analysis to estimate the distribution of the 

wavelet coefficients under null hypothesis. This step is 

explained in Section 3.1. After eliminating the noisy 

coefficients, we combine the remaining coefficient to 

build the desired feature space (described in Section 3.2). 

Then we used the method proposed by Jahanian et al.[7] 

to find the activation map. 

 

3.1 Noise Suppression 

 

Assume d is an arbitrary wavelet coefficient. By 

comparing d of each time series with a threshold da, one 

tests the null hypothesis H0: contains no activation and 

rejects H0 if d>da. To eliminate the coefficients with a 

level of confidence α, a threshold da must be found such 

that prob(d>da | H0) = α. This requires the probability 

density function (pdf) fu(d|H0), which is difficult to derive 

theoretically. The resampling procedure of Bullmore et al. 

[6], permutates the wavelet coefficients of the fMRI time 

series in order to make surrogate data under the null 

hypothesis. The wavelet coefficients of the fMRI time 

series are permutated at different levels of resolution, and 

then an inverse wavelet transform is applied on them to 

generate various realizations of the data under the null 

hypothesis. Wavelet transform is then applied on each set 

of randomized data. These wavelet coefficients construct 

an empirical histogram which estimates the required pdf 

fd(d|H0). Using this histogram we find a set of thresholds 

corresponding to the desired α. Then wavelet coefficients 

of each time series are compared to their corresponding 

thresholds and those smaller than the corresponding 

threshold are set to zero. 

 

3.2 Feature Extraction 

 

To obtain the desired feature, Ci, for each time series, Xi, 

we combine the wavelet coefficients of each time series, 

DXi, according to Eqs. (1)-(2) where DR is the wavelet 

coefficients of R (the reference signal computed by 

convolving the time pattern of the stimulation and HRF) 

 






ii

ei
i

DXDX

DRDX
C

,

,

 
(1) 

)(

)(

DRMeanDR

DRMeanDR
DRe






 
(2) 

 

 

4.  Results 
 

To choose the optimal wavelet basis, we examined 

different wavelets on a simulated dataset with various 

false alarm rates. The db4 wavelet revealed the best 

detection accuracy among all wavelets that have been 

examined.  

 To see the effect of noise suppression procedure, we 

compared the wavelet feature space without noise 

suppression with the proposed feature space. 

 The results show that the proposed noise suppression 

method increases the detection sensitivity at high levels of 

confidence (see Fig. 1). We also applied these feature 

spaces to 6 finger-tapping fMRI datasets. We found that 

the proposed method for noise suppression help the 

proposed wavelet feature space with detecting more 

activated voxels in the expected regions (Supplementary 

Motor Area (SMA), SensoriMotor Cortex (SMC), and 

Cerebellum) (see Fig. 2). 
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Fig. 1. Number of true positives in analyzing simulated dataset at different false alarm rates for db4 wavelet feature 

space with and without noise suppression. 



 
 

Fig. 2. Detected activation regions using (a) The proposed feature pace with noise suppression at α=0.003, (b) The 

proposed feature space without noise suppression. 

 

 

5.  Discussion and Conclusion 
 

A novel model-free method for denoising fMRI time 

series is introduced and its benefit is shown using fuzzy 

cluster analysis of simulated and experimental fMRI 

datasets. The proposed method increased the detection 

sensitivity, especially, at low false alarm rates. This 

behavior is expected because sensitive detection methods 

usually manifest their ability at small false alarm rates. 

Detecting more activated voxels in the same expected 

regions (SMA, SMC, and Cellebrum) at the same false 

alarm rates when analyzing finger-tapping fMRI dataset 

shows superior detection sensitivity of the proposed 

method compared to the previous method. This reveals 

efficiency of the proposed method in eliminating noise 

and detecting activated regions in real fMRI data. This 

superiority stems from non-parametric estimation of the 

noise distribution for a particular dataset which is 

obtained at the expense of computational complexity of 

the randomization analysis. 
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