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Abstract — This paper presents and compares soft computing
approaches for prediction of surgery outcome in temporal lobe
epilepsy. Because of a wide range of effective parameters in
epilepsy and unclear exact contribution of each, determination of
the best treatment is difficult. We have implemented and
compared data fusion methods and decision support algorithms
to overcome this difficulty. Our simulation studies and
experimental results using HBIDS (Human Brain Image
Database System) data show the power of LS-SVM (Least
Squared Support Vector Machine) classifiers for this purpose.

1. INTRODUCTION

Epilepsy is recognized as an organic process of the brain.
More formally, epilepsy is an occasional, excessive, and
disorderly discharge of nerve tissue, seizure, which sometimes
can be detected by electroencephalographic (EEG) recording.
It is a complex disease caused by a variety of pathological
processes that result in treatment selection difficulties.
Pharmacotherapy or surgical treatments are the neurologist
alternatives. Selection of the most appropriate treatment could
change the patient’s life.

Despite optimal pharmacotherapy about 20-30% of
patients do not become seizure-free [1]. For some of these
patients, surgery is a therapeutic option. Success of resective
epilepsy surgery has been estimated to increase from 43% to
85% during the period 1986-1999 [2]. Data from multiple
sources suggest that 55-70% of patients undergoing temporal
resection and 30-50% of patient undergoing extra-temporal
resection become completely seizure-free [1]. A recent
prospective randomized controlled trial of surgery for
temporal lobe epilepsy showed that 58% of patients
randomized to surgery was seizure-free compared to 8% of
medical group [2].

Surgery is considered a valuable option for medically
intractable epilepsy even in the absence of a proven drug
resistance; in addition, surgical outcome may be greatly
influenced by the presence of selected prognostic indicators
[3]. However, there are still uncertainties on who are the best
surgical candidates, i.e., those who most likely will present
good surgical outcome.

In a recent narrative literature review of temporal
resections, good surgical outcome was associated with a
number of factors (hippocampal sclerosis, anterior temporal
localization of interictal epileptiform activity, absence of

preoperative generalized seizures, and absence of seizures in
the first post-operative week) [2]. However, the published
results were frequently confusing and contradictory, thus
preventing inferences for clinical practice. Methodological
issues (e.g., sample size, selection criteria, and methods of
analysis) were indicated by the authors as the most likely
explanation of the conflicting literature reports [3].

For this reason, a quantitative review of the available
literature has been undertaken in [2] to assess the overall
outcome of epilepsy surgery and to identify the factors better
correlating to seizure outcome. The aim of the study was to
perform a meta-analysis of the results of published
observational studies and assess the prognostic significance of
selected variables outlining the characteristics of the clinical
condition, the correlations between the epileptogenic and
functional lesion, and the type of surgical procedure.

In such a complex problem, computer aided systems help
neurologists to make a more reliable decision. Using a
database of other epilepsy cases, a soft computing algorithm
may locate similar cases and with regard to previous
experiences, propose a conclusive and supported suggestion
for neurologist for upcoming cases. The most frequent factors
among patients with similar surgery results are more likely to
have effect on the decision. In this paper, a computerized
treatment decision support algorithm for temporal lobe
epilepsy is presented. Also, popular decision support
algorithms such as support vector machines, Bayesian
network, and nearest neighbour have been compared.

The rest of the paper is organized as follows. Section II is
devoted to data fusion and feature selection strategies. In
Section III, HBIDS and the proposed training method are
described. Simulation results and comparison of alternative
methods are presented in Section IV. Finally, the paper is
concluded in Section V.



II. DATA FUSION FOR DECISION MAKING

A. Temporal Lobe Epilepsy Surgical Outcome

The surgical outcome can be quite variable from case to
case [4]-[5]. In most successful surgeries, the seizures
completely disappear with non—disabling simple seizures
during the first two years, and convulsions only when
medications are withdrawn. In some other cases, the primary
seizure disappears but rarely some disabling seizures during
the first two years may occur. Other patients may experience
worthwhile seizure reduction and prolonged seizure-free
intervals amounting to half of the follow-up period. In the
worse case, there is no significant seizure reduction.
Therefore, prediction of the success of surgery is quite
important in deciding whether the surgery is the best
treatment. The main contribution of this paper is to provide a
data fusion approach to evaluate the usefulness of surgery by
comparing patients with similar medical and clinical
conditions. The first step towards this approach is to identify
effective features.

B.  Features Selection

Based on the review of many articles in [2] meeting all the
eligibility criteria, febrile seizures, mesial temporal sclerosis,
tumours, abnormal MRI, EEG/MRI concordance, and
extensive surgical resection were the strongest prognostic
indicators of seizure remission (positive predictors); by
contrast, postoperative discharges and intracranial monitoring
predicted an unfavourable prognosis (negative predictors).

Actually, firm conclusions cannot be drawn for the extent
of resection, EEG/MRI concordance, and post-operative
discharges for the heterogeneity of study results [6].

We examined pre-operative interictal and ictal
electroencephalographic (EEG) findings, age of onset, gender,
duration of epilepsy, risk factors, family history, physical
findings, age at operation, side of operation, and pathology of
resected tissue in order to determine if any of these factors
were associated with outcome. All of the features are
combined in a decision support system (see Fig. 1). In the
following section, some details of this structure are illustrated.

C. Feature Vector Construction and Data Fusion

In a decision support structure, clinical features are
combined to reach the final conclusion. If the features have a
common unit, called commensurate features in the data fusion
literature, the combination can be accomplished by the
traditional weight summation. For epileptic clinical feature
combination, feature vectors have no common unit, thus in the
literature, some feature vector concatenation algorithms have
been proposed. To provide an explicit control over how much
each vector contributes to the final decision, usually a weight
vector is applied to the concatenated feature vector.
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The weight vector is selected subject to classification
performance optimization [7]. In the current case, the weight

vector is used to maximize between classes to within classes
distance ratio:
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where F;" represents set of feature vectors in the i-th class
weighted by W and Dis is between class to within class ratio
function where the Euclidean distance is used as the feature
space distance measure [7].

D. Classification

Medical classification accuracy studies often yield continuous
data based on predictive models for treatment outcomes. The
sensitivity and specificity of a diagnostic test depends on more
than just the "quality" of the test--they also depend on the
definition of what constitutes an abnormal test. A popular
method for evaluating the performance of a diagnostic test is
the receiver operating characteristic (ROC) curve analysis [8].
ROC is a plot of the true positive rate against the false positive
rate for the different possible cut-points of the classifier. Each
point of the ROC curve is obtained by finding the true positive
rate when the decision threshold is selected based on a specific
false alarm rate.

The area under ROC curve represents accuracy of a
classifier. In medical problems, false alarm rate as well as
false rejection rate should be lower that pre-specified limits.
The trade off between false alarm rate and false rejection rate
is problem specific. In surgery decision-making problem, both
rates must be considered; however, false alarm rate (plan
surgery for a patient who does not need it) is more likely to be
of concern. In this paper, performance of decision systems is
evaluated using the sum of false alarm and false rejection
rates.
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Fig. 1. Non-commensurate data fusion diagram.
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Fig. 2. Receiver-operating characteristic (ROC) curves plotting sensitivity
versus specificity for different classifiers. The area under ROC curve for LS-
SVM, Bayesian network and 3-nearest network are 0.913, 0.876 and 0.855,
respectively.
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Fig. 3. Feature vector disturbance effect on classification error when the sum
of false alarm and false rejection rates are minimal.
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Fig. 4. SVM classifier in feature #1-feature #2 normalized space.
ITII. SIMULATION SETUP AND DATABASE DESCRIPTION

A. HBIDS
Human brain image database system (HBIDS) is under
development for epilepsy patients at Henry Ford Health

System, Detroit, MI [9, 10]. The proposed HBIDS will
examine surgical candidacy among temporal lobe epilepsy
patients based on their brain images and other data modalities.
Moreover, it can discover relatively weak correlations
between symptoms, medical history, treatment planning,
outcome of the epilepsy surgery, and brain images. The
HBIDS data include modalities such as MRI and SPECT
along with patient’s personal and medical information and
EEG study [10]. The data has been de-identified according to
HIPPA regulations [9].

For the first phase of the EEG study, the non-visual
feature extractor is an expert or specialist. The experts do this
routinely in the clinic based on well-defined standards. For un-
structured text information, the wrapper is the expert or
trained nurse. The structured data such as patient’s personal
information do not need to be analyzed by the wrapper, so
they are directly stored in the database.

For each patient, the database contains the personal
information, such as sex and age, diagnostic information, such
as seizure type and epilepsy location, EEG result, suggested
treatment and surgery outcome as well as visual information
[10].

In this research, only the non-visual information of each
patient has been used. Each patient’s data is represented by a
concatenated feature vector with seven elements and a value
that represents the surgery outcome (for the patients with only
pharmacotherapy, surgery is assumed to be unnecessary). The
features include age, sex, weight, genetic background,
abnormality of EEG, seizure type diagnosis, epilepsy location,
tumour diagnosis, previous treatment history, and surgery
decision. Some of the factors such as age and sex have been
combined to present a single feature (weighted fusion). Also a
ranking table has been used to encode medical and drug
history information [6].

In some cases, patients’ information is not complete. In
the training phase, missing data are filled by the average of the
other patients in the same class. In the testing phase, they are
filled by the average of the entire available data. Thirty-five
patients with temporal lobe epilepsy who have undergone
temporal lobectomies at Henry Ford Health System are
selected for the study. The initial pre-surgical evaluation of the
epileptic  patients includes history and neurological
examination.

B.  Training Method

For most efficient use of the data, training and test sets are
not separated. In each training epoch, 4/5 of the patients are
randomly selected to train the classifier. The rest of the
patients (1/5) are used to test. The final classifier is the
average of many training processes. This training strategy
provides maximum database usage efficiency at the cost of
higher computational complexity. In this experiment, more
than 50 train-test sets are used. The training process terminates
when the classifier’s mean squared error of the test-set



increases in the two last epochs. The train and test vectors are
normalized classification.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this research, three conventional classifiers used in
decision support systems have been compared (k-nearest
neighbor [7], Bayesian network [11], and support vector
machine (SVM)). Primary simulations of the k-nearest
neighbor algorithm for k = [1...5] show that the best results
are obtained using k=3. For the SVM, RBF implementation of
least square (LS-SVM) has been applied [12]. Training
process is terminated in SVM and Bayesian network based on
the testing curve to prevent over-training.

To compare the classifiers’ accuracy, ROC curves for the
three classifiers are generated and shown in Fig. 2. In each
case, four points of the ROC curve are calculated. The area
under ROC curve for LS-SVM, Bayesian network and 3-
nearest network are 0.913, 0.876 and 0.855, respectively. The
results show high sensitivity of 3-nearest neighbour. In
contrast with SVM, the nearest neighbour algorithm depends
on a few feature vectors, which are in the vicinity of the target
point. Thus, it has high sensitivity, especially in a problem
with a small number of samples.

Due to the usual artifacts in medical features, medical
decision support algorithm should have good disturbance
robustness. Although some features such as sex and age are
naturally artifact-free, the performance of the algorithms can
be presented in terms of the signal to artifact or signal to noise
ratio (see Fig. 3). To this end, using the ROC curve, the
decision threshold corresponding to the minimum summation
of the false alarm and false rejection rates is chosen. The same
training set is used for all classifiers. The error curves are the
average of the results from 10 training processes. In high error
conditions, SVM has the best performance. Also in some
middle conditions, Bayesian network has shown a better
performance, but only in a small interval.

Finally, SVM generalization capability is significant. Fig.
4 compares SVM classifier surface projection onto featurel-
feature2 space for three different training sets. Closeness of
these curves supports the SVM generalization. Based on the
above simulation results, SVM seems to be the best alternative
for epilepsy prediction problem among the methods studied.

In the future work, more complex features, such as MRI
and SPECT images, will be used to reach more accurate
decisions. Also, the authors plan to predict other important
indices such as surgery risk and the best surgery time by
utilizing neuro-fuzzy classifiers and expert systems. To this
end, more advanced classifier evolutions may be required

[11].

V. CONCLUSION

In this paper, we have proposed a data fusion algorithm to
predict temporal lobe epilepsy surgery outcome. This method
concatenates clinical date believed to have strong

contributions to the surgery outcome. The simulation of the
weighted vector concatenating data fusion and LS-SVM
classifier on HBIDS has shown that the algorithm predicts
whether the surgery is the best solution for a patient in more
than 90% of the cases. Also, the ROC analysis and feature
vector distortion studies have shown that the SVM method is
more reliable that the other classifiers compared for this
particular problem.
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