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 Abstract – This paper presents and compares soft computing 
approaches for prediction of surgery outcome in temporal lobe 
epilepsy. Because of a wide range of effective parameters in 
epilepsy and unclear exact contribution of each, determination of 
the best treatment is difficult. We have implemented and 
compared data fusion methods and decision support algorithms 
to overcome this difficulty. Our simulation studies and 
experimental results using HBIDS (Human Brain Image 
Database System) data show the power of LS-SVM (Least 
Squared Support Vector Machine) classifiers for this purpose. 
   
 

I.  INTRODUCTION 

 Epilepsy is recognized as an organic process of the brain. 
More formally, epilepsy is an occasional, excessive, and 
disorderly discharge of nerve tissue, seizure, which sometimes 
can be detected by electroencephalographic (EEG) recording. 
It is a complex disease caused by a variety of pathological 
processes that result in treatment selection difficulties. 
Pharmacotherapy or surgical treatments are the neurologist 
alternatives. Selection of the most appropriate treatment could 
change the patient’s life.  

Despite optimal pharmacotherapy about 20–30% of 
patients do not become seizure-free [1]. For some of these 
patients, surgery is a therapeutic option. Success of resective 
epilepsy surgery has been estimated to increase from 43% to 
85% during the period 1986–1999 [2]. Data from multiple 
sources suggest that 55–70% of patients undergoing temporal 
resection and 30–50% of patient undergoing extra-temporal 
resection become completely seizure-free [1]. A recent 
prospective randomized controlled trial of surgery for 
temporal lobe epilepsy showed that 58% of patients 
randomized to surgery was seizure-free compared to 8% of 
medical group [2].  

Surgery is considered a valuable option for medically 
intractable epilepsy even in the absence of a proven drug 
resistance; in addition, surgical outcome may be greatly 
influenced by the presence of selected prognostic indicators 
[3]. However, there are still uncertainties on who are the best 
surgical candidates, i.e., those who most likely will present 
good surgical outcome.  

In a recent narrative literature review of temporal 
resections, good surgical outcome was associated with a 
number of factors (hippocampal sclerosis, anterior temporal 
localization of interictal epileptiform activity, absence of 

preoperative generalized seizures, and absence of seizures in 
the first post-operative week) [2]. However, the published 
results were frequently confusing and contradictory, thus 
preventing inferences for clinical practice. Methodological 
issues (e.g., sample size, selection criteria, and methods of 
analysis) were indicated by the authors as the most likely 
explanation of the conflicting literature reports [3].  

For this reason, a quantitative review of the available 
literature has been undertaken in [2] to assess the overall 
outcome of epilepsy surgery and to identify the factors better 
correlating to seizure outcome. The aim of the study was to 
perform a meta-analysis of the results of published 
observational studies and assess the prognostic significance of 
selected variables outlining the characteristics of the clinical 
condition, the correlations between the epileptogenic and 
functional lesion, and the type of surgical procedure. 

In such a complex problem, computer aided systems help 
neurologists to make a more reliable decision. Using a 
database of other epilepsy cases, a soft computing algorithm 
may locate similar cases and with regard to previous 
experiences, propose a conclusive and supported suggestion 
for neurologist for upcoming cases. The most frequent factors 
among patients with similar surgery results are more likely to 
have effect on the decision. In this paper, a computerized 
treatment decision support algorithm for temporal lobe 
epilepsy is presented. Also, popular decision support 
algorithms such as support vector machines, Bayesian 
network, and nearest neighbour have been compared. 

The rest of the paper is organized as follows. Section II is 
devoted to data fusion and feature selection strategies.  In 
Section III, HBIDS and the proposed training method are 
described. Simulation results and comparison of alternative 
methods are presented in Section IV. Finally, the paper is 
concluded in Section V. 
 



II.  DATA FUSION FOR DECISION MAKING  

A.  Temporal Lobe Epilepsy Surgical Outcome  
The surgical outcome can be quite variable from case to 

case [4]-[5]. In most successful surgeries, the seizures 
completely disappear with non–disabling simple seizures 
during the first two years, and convulsions only when 
medications are withdrawn. In some other cases, the primary 
seizure disappears but rarely some disabling seizures during 
the first two years may occur. Other patients may experience 
worthwhile seizure reduction and prolonged seizure-free 
intervals amounting to half of the follow-up period. In the 
worse case, there is no significant seizure reduction.  
Therefore, prediction of the success of surgery is quite 
important in deciding whether the surgery is the best 
treatment. The main contribution of this paper is to provide a 
data fusion approach to evaluate the usefulness of surgery by 
comparing patients with similar medical and clinical 
conditions. The first step towards this approach is to identify 
effective features.       
 
B. Features Selection 

Based on the review of many articles in [2] meeting all the 
eligibility criteria, febrile seizures, mesial temporal sclerosis, 
tumours, abnormal MRI, EEG/MRI concordance, and 
extensive surgical resection were the strongest prognostic 
indicators of seizure remission (positive predictors); by 
contrast, postoperative discharges and intracranial monitoring  
predicted an unfavourable prognosis (negative predictors).  

Actually, firm conclusions cannot be drawn for the extent 
of resection, EEG/MRI concordance, and post-operative 
discharges for the heterogeneity of study results [6]. 

We examined pre-operative interictal and ictal 
electroencephalographic (EEG) findings, age of onset, gender, 
duration of epilepsy, risk factors, family history, physical 
findings, age at operation, side of operation, and pathology of 
resected tissue in order to determine if any of these factors 
were associated with outcome. All of the features are 
combined in a decision support system (see Fig. 1). In the 
following section, some details of this structure are illustrated.   
 
    
C. Feature Vector Construction and Data Fusion  

In a decision support structure, clinical features are 
combined to reach the final conclusion. If the features have a 
common unit, called commensurate features in the data fusion 
literature, the combination can be accomplished by the 
traditional weight summation. For epileptic clinical feature 
combination, feature vectors have no common unit, thus in the 
literature, some feature vector concatenation algorithms have 
been proposed. To provide an explicit control over how much 
each vector contributes to the final decision, usually a weight 
vector is applied to the concatenated feature vector. 
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The weight vector is selected subject to classification 
performance optimization [7]. In the current case, the weight 

vector is used to maximize between classes to within classes 
distance ratio: 
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where Fi
w represents set of feature vectors in the i-th class 

weighted by W and Dis is between class to within class ratio 
function where the Euclidean distance is used as the feature 
space distance measure [7].    
 

D. Classification  

Medical classification accuracy studies often yield continuous 
data based on predictive models for treatment outcomes. The 
sensitivity and specificity of a diagnostic test depends on more 
than just the "quality" of the test--they also depend on the 
definition of what constitutes an abnormal test.   A popular 
method for evaluating the performance of a diagnostic test is 
the receiver operating characteristic (ROC) curve analysis [8]. 
ROC is a plot of the true positive rate against the false positive 
rate for the different possible cut-points of the classifier. Each 
point of the ROC curve is obtained by finding the true positive 
rate when the decision threshold is selected based on a specific 
false alarm rate.   

The area under ROC curve represents accuracy of a 
classifier. In medical problems, false alarm rate as well as 
false rejection rate should be lower that pre-specified limits. 
The trade off between false alarm rate and false rejection rate 
is problem specific. In surgery decision-making problem, both 
rates must be considered; however, false alarm rate (plan 
surgery for a patient who does not need it) is more likely to be 
of concern. In this paper, performance of decision systems is 
evaluated using the sum of false alarm and false rejection 
rates.   
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Fig. 1.  Non-commensurate data fusion diagram. 
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Fig. 2. Receiver-operating characteristic (ROC) curves plotting sensitivity 

versus specificity for different classifiers. The area under ROC curve for LS-
SVM, Bayesian network and 3-nearest network are 0.913, 0.876 and 0.855, 

respectively.  
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Fig. 3. Feature vector disturbance effect on classification error when the sum 

of false alarm and false rejection rates are minimal.   
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Fig. 4.  SVM classifier in feature #1-feature #2 normalized space.  

 III.  SIMULATION SETUP AND DATABASE DESCRIPTION  

A. HBIDS 
Human brain image database system (HBIDS) is under 

development for epilepsy patients at Henry Ford Health 

System, Detroit, MI [9, 10]. The proposed HBIDS will 
examine surgical candidacy among temporal lobe epilepsy 
patients based on their brain images and other data modalities. 
Moreover, it can discover relatively weak correlations 
between symptoms, medical history, treatment planning, 
outcome of the epilepsy surgery, and brain images. The 
HBIDS data include modalities such as MRI and SPECT 
along with patient’s personal and medical information and 
EEG study [10]. The data has been de-identified according to 
HIPPA regulations [9].  

 For the first phase of the EEG study, the non-visual 
feature extractor is an expert or specialist. The experts do this 
routinely in the clinic based on well-defined standards. For un-
structured text information, the wrapper is the expert or 
trained nurse. The structured data such as patient’s personal 
information do not need to be analyzed by the wrapper, so 
they are directly stored in the database.   

 For each patient, the database contains the personal 
information, such as sex and age, diagnostic information, such 
as seizure type and epilepsy location, EEG result, suggested 
treatment and surgery outcome as well as visual information 
[10]. 

In this research, only the non-visual information of each 
patient has been used. Each patient’s data is represented by a 
concatenated feature vector with seven elements and a value 
that represents the surgery outcome (for the patients with only 
pharmacotherapy, surgery is assumed to be unnecessary). The 
features include age, sex, weight, genetic background, 
abnormality of EEG, seizure type diagnosis, epilepsy location, 
tumour diagnosis, previous treatment history, and surgery 
decision. Some of the factors such as age and sex have been 
combined to present a single feature (weighted fusion). Also a 
ranking table has been used to encode medical and drug 
history information [6].       

 In some cases, patients’ information is not complete. In 
the training phase, missing data are filled by the average of the 
other patients in the same class. In the testing phase, they are 
filled by the average of the entire available data. Thirty-five 
patients with temporal lobe epilepsy who have undergone 
temporal lobectomies at Henry Ford Health System are 
selected for the study. The initial pre-surgical evaluation of the 
epileptic patients includes history and neurological 
examination. 

 

B. Training Method  
 For most efficient use of the data, training and test sets are 
not separated. In each training epoch, 4/5 of the patients are 
randomly selected to train the classifier. The rest of the 
patients (1/5) are used to test. The final classifier is the 
average of many training processes. This training strategy 
provides maximum database usage efficiency at the cost of 
higher computational complexity. In this experiment, more 
than 50 train-test sets are used. The training process terminates 
when the classifier’s mean squared error of the test-set 



increases in the two last epochs. The train and test vectors are 
normalized classification.            
 

IV.  SIMULATION RESULTS AND DISCUSSIONS 

 In this research, three conventional classifiers used in 
decision support systems have been compared (k-nearest 
neighbor [7], Bayesian network [11], and support vector 
machine (SVM)). Primary simulations of the k-nearest 
neighbor algorithm for k = [1…5] show that the best results 
are obtained using k=3. For the SVM, RBF implementation of 
least square (LS-SVM) has been applied [12]. Training 
process is terminated in SVM and Bayesian network based on 
the testing curve to prevent over-training.         
 To compare the classifiers’ accuracy, ROC curves for the 
three classifiers are generated and shown in Fig. 2. In each 
case, four points of the ROC curve are calculated. The area 
under ROC curve for LS-SVM, Bayesian network and 3-
nearest network are 0.913, 0.876 and 0.855, respectively. The 
results show high sensitivity of 3-nearest neighbour. In 
contrast with SVM, the nearest neighbour algorithm depends 
on a few feature vectors, which are in the vicinity of the target 
point. Thus, it has high sensitivity, especially in a problem 
with a small number of samples. 
 Due to the usual artifacts in medical features, medical 
decision support algorithm should have good disturbance 
robustness. Although some features such as sex and age are 
naturally artifact-free, the performance of the algorithms can 
be presented in terms of the signal to artifact or signal to noise 
ratio (see Fig. 3). To this end, using the ROC curve, the 
decision threshold corresponding to the minimum summation 
of the false alarm and false rejection rates is chosen. The same 
training set is used for all classifiers. The error curves are the 
average of the results from 10 training processes. In high error 
conditions, SVM has the best performance. Also in some 
middle conditions, Bayesian network has shown a better 
performance, but only in a small interval.  
 Finally, SVM generalization capability is significant. Fig. 
4 compares SVM classifier surface projection onto feature1-
feature2 space for three different training sets.  Closeness of 
these curves supports the SVM generalization. Based on the 
above simulation results, SVM seems to be the best alternative 
for epilepsy prediction problem among the methods studied.  
 In the future work, more complex features, such as MRI 
and SPECT images, will be used to reach more accurate 
decisions. Also, the authors plan to predict other important 
indices such as surgery risk and the best surgery time by 
utilizing neuro-fuzzy classifiers and expert systems. To this 
end, more advanced classifier evolutions may be required 
[11].                  

 

V.  CONCLUSION 

 In this paper, we have proposed a data fusion algorithm to 
predict temporal lobe epilepsy surgery outcome. This method 
concatenates clinical date believed to have strong 

contributions to the surgery outcome. The simulation of the 
weighted vector concatenating data fusion and LS-SVM 
classifier on HBIDS has shown that the algorithm predicts 
whether the surgery is the best solution for a patient in more 
than 90% of the cases.  Also, the ROC analysis and feature 
vector distortion studies have shown that the SVM method is 
more reliable that the other classifiers compared for this 
particular problem.            
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