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 Abstract – We have proposed a method for localization of 
anatomical landmarks comprised of two steps: 1) information 
extraction, and 2) information analysis. The focus of this paper is 
on the second step during which a set of points, found in the first 
step, is evaluated. This step utilizes a set of rules and eventually 
generates a confidence factor (CNF) for each set of points that 
indicates as to what degree they are good representatives of the 
“landmarks of interest.” We also propose two alternative 
decision-making schemes: 1) Bayesian networks, and 2) 
possibilistic inference methods. The latter design is expected to 
outperform the other two as it utilizes both desired and undesired 
information. Our simulation study resulted in very similar 
performance for the rule-based and Bayesian schemes. The 
overall success rate (average of sensitivity and specificity) of the 
entire proposed method in localization of the hippocampus on 
MRI images was 83.3% with an accuracy of 99.2% (using rule-
based decision-making scheme). 
 

I.  INTRODUCTION 

 Anatomical Landmark localization is important [1]-[2] as 
it provides: 1) initial information for registration, 2) navigation 
and retrieval guidance through the image data [3], 3) initial 
models for segmentation [4], and 4) valuable (though rough) 
information about the organs or structures of interest [3]. We 
have proposed a two-step knowledge-based method to localize 
lateral landmarks of the lateral ventricles, superior landmarks 
of the hippocampus, medial-inferior landmarks of the insular 
cortex [5]. This localization eventually provides a 3D 
deformable model with the initial model of the hippocampus. 
The steps involved in the proposed method are: 1) anatomical 
information extraction, and 2) information analysis. In this 
paper, we propose three frameworks for the second step: 
analysis of the spatial information extracted during the first 
step of the localization method. The proposed frameworks are 
based on: 1) rule-based systems, 2) Bayesian networks, and 3) 
possibilistic inference. We also propose a ground on which the 
proposed information analysis schemes can be evaluated in 
terms of their sensitivity, specificity, and overall success rate. 
 

II.  METHOD 

The localization method at the first step requires an expert to 
define a rough roadmap passing through a set of high-contrast 
landmarks (milestones), and eventually reaching at the 
structure of interest. The expert is asked to mark the 

milestones as desired points and a few points around them as 
undesired points. Then we estimate Gaussian models for the 
marked points and use them to determine the optimal search 
area for each desired landmark. The search areas estimated in 
this step are considered as segments of the statistical roadmap. 
 In the second step, we use the above statistical roadmap 
along with: 1) symmetry and 2) absolute statistical models to 
analyse the extracted anatomical information. The symmetry 
model indicates how symmetric the landmarks of interest 
extracted from the two hemispheres are relative to the 
interhemispheric plane. The absolute spatial model provides 
the distribution of landmarks of interest in a reference 
coordinates system (with roadmap starting point as its origin). 

A. Information Extraction 
 When localizing an anatomical structure, especially with 
low contrast and missing boundaries, the experts tend to look 
at the well-defined neighboring structures with high contrast 
to ensure that they have targeted the correct spot. This 
observation brings up the notion of making a roadmap to get 
to a desired anatomical landmark. A roadmap simply consists 
of a starting point and a few milestones with pre-specified 
segments taking us from one milestone to the next. Unlike the 
geographical maps, in an anatomical map the road from one 
landmark to the next one cannot be deterministically defined 
since it varies from subject to subject. So, we estimate a 
statistical map to optimize the sensitivity and specificity. 
There is an approximate geometrical position for each 
anatomical landmark, which can be looked for and found. An 
approximate relative spatial relationship does also exist among 
the anatomical structures. The above two postulations make it 
possible to build a statistical brain roadmap to localize the 
brain structures. 
 We use the expert-marked landmarks as the training set, 
(Fig. 1(a)) to estimate the statistical models of the desired and 
undesired landmarks (Fig. 1(c)). The undesired landmarks 
have similar features to those of the desired ones and are 
located in their close vicinities. Therefore, they can be 
deceitful and we should avoid them. Estimation of the optimal 
search areas and the search method (Fig. 1(b)) can be found in 
great details in our previous work [5]. 
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Fig. 1. a) Expert-marked landmarks for lateral ventricles when looking from 

starting point (point-1); lateral ventricles (point-2) as desired landmark, 
superior corners of third ventricle (point-3), medial points of Sylvian fissure 
(point-4), and lateral points of callosal sulcus (point-5) and eingulate sulcus 

(point-6) as undesired landmarks. b) Search performed on a GM map to find a 
point of insular cortex. c) Distribution of desired and undesired landmark 

points with isocontours drawn at 95% confidence level. 
 

B. Information Analysis: Rule-Based System 

 For this framework, we construct a set of fourteen rules 
using the estimated statistical models. We have defined three 
categories of rules based on: (i) absolute locations of the 
landmarks in a global reference coordinates system; (ii) 
relative locations of the landmarks; and (iii) general 
interhemispheric symmetry of the brain. The first category is 
based on our first postulation that the brain landmarks have 
absolute ballpark locations on the slices presenting the 
structure of interest. Furthermore, this ballpark location can be 
statistically modeled (in a global coordinates system built on 
the starting point of the search). So we estimate statistical 
models for absolute locations of the landmarks of interest 
using expert-marked landmarks very similar to the information 
extraction section. Fig. 2(a) depicts the points marked and the 
iso-contours of the models estimated in this regard. The iso-
contours are determined at 95% confidence level that sets the 
probability of detection of the associated rules at 0.95. If a 
landmark is found in an unexpected region, i.e., outside of the 
iso-contour, the confidence of the system in correct 
identification of the landmark decreases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. a) Absolute coordinates of the lateral and medial points of the lateral 
ventricles (pentagrams and triangles, respectively), the superior, lateral, and 

inferior points of the hippocampus (diamonds, stars, and pentagrams, 
respectively), and the medial inferior points of the insular cortex (triangles). 

All the points are given in a reference coordinate system built on the 
roadmap’s starting point as the origin. The iso-contours are drawn at 95% 

confidence level. (b)-(e) The deviations in vertical coordinate for each pair of 
a landmark at the left and right hemisphere vs. the deviation of the average of 
the corresponding horizontal coordinates from the interhemispheric plane, b) 

the lateral, c) the inferior landmarks of the hippocampus, d) the medial 
inferior points of the insular cortex, e) the lateral landmarks of the lateral 

ventricles. 

 
 For instance, a point found as the lateral landmark of the 
left lateral ventricle with a horizontal coordinate greater than 
30 or less than 10 (called EFj: j-th extracted features of the 
point) is not supported by the rule that corresponds to the 
absolute distribution of this landmark. This rule uses the above 
horizontal acceptable limits (ALj,1 and ALj,2) depicted in Fig. 
2(a). These limits are violated by EFj. In order to calculate the 
corresponding intermediate confidence factor (ICNFj) we use 
the following formula: 
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jiTP ,  is the softening parameter that governs a soft transition 
of the i-th rule based on an unacceptable mismatch in j-th AL 
and EF. TP’s were mostly set to 10 in our work extending the 
transient strip to about 8 mm. A maximum ICNFi score of 100 
strongly supports a found point and a minimum ICNFi score of 
zero strongly denies it to be what it is meant to be. A final 
confidence factor (CNF) is calculated as a sample mean of the 
ICNF’s. We consider the extracted landmarks reliable only 
when CNF ≥ 90. 
 The second category considers the location of a brain 
structure relative to the other structures. In this case, a 
particular landmark is expected to be superior, inferior, 
medial, or lateral relative to another landmark. These 
qualitative expectations are converted to quantitative measures 
based on the statistical models (partly) shown in Fig. 2(a) as 
well as the ones derived in the information extraction section. 
 The third category is based on general symmetry of the 
brain. If MR images are acquired in coronal or axial 
directions, the symmetry feature will be observed relative to 
the interhemispheric plane. If there is a rotation toward the 
sagittal direction, this feature will not be valid any more. We 
materialize this relative symmetry concept in the proposed 
rules based on the statistical models derived here and partly 
shown in Fig. 2(b)-(e). 
 

C. Information Analysis: Bayesian Network 
 The proposed information analysis scheme, which can be 
considered as an extension of the conventional rule-based 
systems, performed well in our experiments with hippocampus 
initialization. However, it needs to calculate the acceptable 
limits and emphasizes the horizontal and vertical directions. 
Therefore, it is not the most efficient way of utilizing the 
statistical models. There are other information analysis 
methods (e.g., Bayesian networks and possibilistic inference). 
In the next two subsections, we briefly introduce the 
frameworks in which the information analysis phase can be 
extended starting with Bayesian networks and proceeding to 

possibilistic reasoning. Bayesian network is a natural 
extension of the scheme introduced in Subsection B. This 
comes from the fact that we can easily assign probability 
measures to each point found during the information 
extraction phase. As illustrated in Fig. 3, we may have a 
distribution model for the starting point of the roadmap in an 
anatomically defined coordinate system (e.g., anterior 
commissure-posterior commissure (AC-PC) segment). The 
Bayesian network then descends from its root node by 
calculating P(St_Pnt), the probability of correctly localizing 
the starting point of the roadmap. The next set of conditional 
probabilities, shown in Fig. 3, consists of evaluations of the 
extracted landmarks in their corresponding statistical models, 
i.e., Gd,i(x,y) where (x,y) is the coordinate of an extracted point 
and Gd,i(x,y) is the Gaussian distribution of the i-th desired 
landmark. Note that P(Ltr_Vnt | St_Pnt) is the probability of 
correctly localizing the lateral points of the lateral ventricles 
given the starting point of the roadmap is correctly localized. 
Similarly, P(Sup_Hippo | Ltr_Vnt), P(Inf_Ins | Sup_Hippo), 
P(Inf_Hippo | Sup_Hippo), and P(Ltr_Hippo | Inf_Ins) are the 
probabilities of correctly localizing the superior landmarks of 
the hippocampus, the inferior limit of the insular cortex, the 
inferior landmarks of the hippocampus, and lateral landmarks 
of the hippocampus given their conditions, respectively. These 
are all estimated in Subsection A. There are many branches in 
the network partially shown in Fig. 3. We are only interested 
in one path that results in the probabilities of localizing the 
desired landmarks correctly. These are shown in this figure by 
solid arrows. In particular, we are interested in two leaf nodes 
marked by rectangular boxes. Although P(Sup_Hippo | 
Ltr_Vnt) is an important intermediate probability measure 
(marked with a rectangle), since it is a parent node and its 
value will eventually affect the child nodes (the probabilities 
are multiplied along each path of the tree), we do not need to 
directly consider it in the final CNF calculation. Using this 
scheme, we can substitute a major part of the relative rules 
with the proposed network. Therefore, in our final decision-
making step (CNF calculation) we combine these two leaf 
nodes as well as the ICNF results produced by the remaining 
rules not covered by the proposed network.

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Bayesian networks alternative for the information analysis phase that covers the category of relative rules. 



 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Illustration of the notations and the way vagueness propagates through the roadmap segments, which is being modeled by the knowledge base.      and     

indicate the desired and undesired landmarks, respectively. 
 
The other option would be to design similar networks for other 
categories of rules and investigate the way we could combine 
the results of each network or perhaps integrate different 
networks. It would be an interesting future work to implement 
and evaluate each of the above choices in a very well 
controlled simulation study. 
 
D. Information Analysis: Possibilistic Inference 
 The previous extension of the proposed information 
analysis method, the Bayesian network, does not utilize the 
undesired models. Despite perfect tuning and efficient 
implementation, it is still not an optimal design, as it does not 
use all available information. The rationale for using the 
possibility measure is that in localizing natural (anatomical) 
landmarks, the landmarks of interest are not defined as a 
single point; rather, there is a range in which all points could 
be called a possible target point. For instance, there are several 
points any of which can be called a “superior landmark of 
hippocampus.” Therefore, the possibility measures can model 
the situation more realistically. To build the possibility 
distributions (πi’s), we can use the probabilistic models 
already estimated, truncate them at their 95% isocontours level 
and scale them so that value “one” would be assigned to every 
point inside an isocontour. 
 A universe
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belonging to each landmark of the roadmap with n landmarks. 
Each domain consists of the desired landmark and a set of 
undesired landmarks, i.e., hiL , corresponds to the possibility 
distribution of the i-th milestone of the roadmap where the 
desired and undesired landmarks correspond to h = 0 and h ∈ 
{1,…,q}, respectively. 
 The knowledge base consists of a set of rules 

mMM RR ,...,1 , corresponding to segments of the roadmap. If 
landmarks i and j are connected by a segment, an index set 

kM  = {i, j} ∈ M will indicate this where M is defined as the 
set of all index sets and is called the modularization of nN . 

We define kMR , the rule corresponding to  kM , as a matrix 
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The rationale behind this formulation is that as we deviate 
from the mean vector of the desired i-th landmark, the 
possibility of finding the next desired (i.e., j-th) landmark may 
change. The change has something to do with the distance, d , 
by which we deviated from the i-th desired landmark. Fig. 4 
illustrates how qi landmark of the i-th milestone is transferred 
into the j-th milestone coordinates and the way its possibility 
distribution interacts with the desired and undesired possibility 
distributions in these new coordinates. It is easy to see that 
when we are at the mean location of the i-th desired landmark, 
finding the j-th desired landmark is quite possible. This is a 
result of the proposed formula, i.e., 10,0 =r . 
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with regard to the universe, U and modularization, M. The 
following function: 
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is called the possibilistic knowledge base induced by 
),( MUR , which is considered non-contradictory if 

)(Ω∈ POSSρ  holds. 
 The total evidence consists of evidences nNN EE ,...,1  
corresponding to the milestones of the roadmap. The i-th piece 
of evidence, ( ) ( ) ( )( )iqiiiii
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by desired and undesired possibility distributions (models) of 
the i-th milestone using the i-th extracted landmark, Xi, as 
input to the possibilistic models, ( )., jiL . 
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N POSSENNENUE Ω∈∈= is called a 
possibilistic evidence system with regard to universe, U and 
partition, N. Note that the partition determines the framework 
of our observations and, in our case, it is the set of all index 
sets of desired and undesired landmarks of each milestone. 
The following function: 
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 In classical applications of expert systems (e.g., [6]), the 
inference scheme is supposed to provide some information 
about the unobserved dimensions. It is unlikely that we will 
have observations (i.e., extracted points) at each and every 
dimension (milestone) of our universe. What we are interested 
in and planning to derive from the inference scheme is the 
propagation of uncertainty throughout the roadmap caused by 
intrinsically vague rules and imperfect information 
extractions. At this point, the state of the expert system, Φ, is 
defined as: 
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σ is consistent if and only if it is a possibility distribution on 
Ω. The possibility distribution )( )()( ii POSS Ω∈κ  defined by 
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the i-th restriction of )),(,( NUεσ Φ . It would be an 
interesting future work to see how the projections of the 
knowledge base on evidence indices, the raw evidences, and 
the restrictions, )(iκ , behave in a simulated environment 
where we have control on each part of the model. Having such 
a simulation, we could come up with a better idea whether we 
can solely depend on restrictions or we may combine them 
with raw evidences and the projections of the knowledge base 
on corresponding lower dimensions. 
 

III.  SIMULATION AND EXPERIMENTAL RESULTS 

 We have simulated random vector x, using white noise w, 
as shown in block diagram of Fig. 5, by implementing VΛ1/2 
where V is the orthogonal matrix of eigenvectors of the 
covariance matrix of x, Λ is the diagonal matrix of 
corresponding eigenvalues, and mx is the mean value of x. 
 
 
 
 

 
Fig. 5. Generating arbitrary random vector x from white noise w. 

 

 
Fig. 6. One segment of the simulation with desired and undesired landmarks. 

 
Fig. 6 Shows a simulated instance of a segment of the 
roadmap. Fig. 7 shows the false alarm rate as a function of two 
variables, TP and CNF threshold. 
 The rule-based and Bayesian method have performed 
similarly throughout our experiments with the simulation. 
However, we still need to further finetune our simulation and 
set up more distinct experiments to magnify the cons and pros 

of each method. We are planning to evaluate the proposed 
possibilistic inference, using this simulation. 

 
Fig. 7. False alarm rate vs. TP and CNF threshold. 

 
 We have applied the rule-based method on T1-weighted 
brain MRI of 10 epileptic patients to find the landmarks of the 
hippocampus. Two perpendicular views of the MRI data with 
the initial model overlaid on, are shown in Fig. 8. In our 
experiment, six patients formed the training set. The method 
made no false alarms. The overall success rate (average of 
sensitivity and specificity) of the algorithm was 83.3% with an 
accuracy of 99.2%. 
 
 

 
 

Fig. 8. Sagittal (left) and coronal (right) views of T1-weighted MRI with cross 
sections of initial models overlaid. 
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