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 Abstract - We have developed an image analysis system for 
scoring yeast growth and color development in images of 96-well 
plates, a common format for high throughput assays. We use a 
segmentation method to locate the plates and spots. Color 
histogram and wavelet features are extracted respectively from 
spots of X-Gal and –leu plates. Two artificial neural networks are 
separately employed to score spots on each plate. The 
performance of the system is evaluated using a data set of 50 
images. The data set was divided into 25 training and 25 testing 
images. Accuracies of 99.7% and 95.2% have been achieved for 
scoring the X-Gal and –leu plates respectively. 
 

I.  INTRODUCTION 

 High throughput assays have become an important part of 
the discovery process in biological and biomedical research.  
A variety of high throughput technologies have been 
developed, for example, to discover how genes and their 
encoded proteins function together in normal and disease 
states [1, 2].  Many of these technologies use the baker’s 
yeast, Saccharomyces cerevisiae, either as a model organism 
to study biological processes that yeast have in common with 
humans, or as an assay system in which to test the functions of 
genes and proteins from humans or other model organisms [3].   
For example, one technology known as the “yeast two-hybrid 
system” uses yeast cells essentially as test tubes in which to 
assay interactions between specific proteins from other 
organisms [4, 5]. Other assays have been developed that use 
yeast cells to screen for drugs or new drug targets [6-8]. One 
common feature of these and other yeast-based assays is that 
they measure the ability of the yeast to grow or to change 
color on solid media.  In the yeast two-hybrid system, for 
example, the protein-protein interaction results in activation of 
two different reporter genes.  One reporter gene is required for 
growth and the other encodes an enzyme that converts a 
colorless compound to a color in the visible spectrum. 
Generally, digital photographs are taken of the solid media 
containing the yeast, and the level of yeast growth and the 
color of the yeast colony for each assay is scored manually.   
This is a tedious time-consuming process that is particularly 
rate limiting for high throughput screens that conduct 
hundreds to thousands of these assays in each experiment.   
 

We have developed an image analysis system for scoring 
yeast growth and color development in images of 96-well 
plates, a common format for high throughput assays. The 
system is employed to analyze the results of a high throughput 

yeast two-hybrid screen.  In this screen, yeast is spotted on 
two flat plates in the common 96-well format, with twelve 
columns and eight rows of spots (see Fig. 1).  Each spot 
represents a separate assay for protein-protein interactions 
using a modified version of the yeast two-hybrid system [9, 
10].  One of the plates lacks a nutrient such that the yeast will 
not grow unless they are expressing one of the LEU2 reporter 
genes (the “–leu plates”).  The other plate contains the 
chromogenic substrate “X-Gal”, which will be converted to a 
blue compound in yeast that expresses the other reporter gene, 
lacZ. This configuration provides two independent assays for 
protein-protein interactions; the same 96 spots are placed on 
both the –leu plate and the X-Gal plate.  After the yeast are 
given a chance to grow by incubation for 2-4 days, the plates 
are photographed.  According to convention [10], the level of 
growth on the –leu plate is scored on a scale of 0-3, where 0 
indicates no growth and 3 indicates maximum growth. On the 
X-Gal plate, the level of reporter activity is scored as the 
amount of blue color of the yeast on a scale of 0-5, where 0 is 
white and 5 is dark blue. Fig. 2 shows samples of spots on X-
Gal and –leu plates with their scores. As shown, in –leu plate 
the amount of growth is determined by the intensity and 
texture of the spot, while in X-Gal plate, the color specifies the 
score.  

Several studies have shown that the amount of growth 
on –leu plates and the amount of blue color on X-Gal plates 
correlates with the level of reporter activity and the general 
affinity of the protein-protein interaction being assayed [11].  
This quantitative information promises to be particularly 
useful for developing computational approaches to interpret 
protein interaction data. 
 Similar works have been done for segmentation and 
scoring the spots in different applications [12]-[19]. An 
automatic method has been presented in [12] for identification 
of bacterial types. Other works [13]-[19] are on the microarray 
segmentation and processing. 
 The outline of this paper is as follows. In Section II we 
describe the segmentation technique to locate the spots in each 
plate. In Section III we present the proposed features to be 
extracted from each spot. The classification method is 
presented in Section IV. Experimental results are explained in 
section V. Conclusions are presented in Section VI. 
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II.  SEGMENTATION 
 As shown in Fig. 1, the image contains two plates located 
in a dark background. The images are of size 1200×1792 
pixels. The segmentation and localization of the spots of each 
plate can be accomplished in two steps. In the first step, the 
plates are separated from the background. In the second step, 
the spots are segmented from each plate. In the following 
subsections each step is explained. 
 
A. Segmentation of Plates 
 To separate the plates from the background, the vertical 
projection of the gray-scaled image is first used to find the 
location of the upper edge of the plate (see Fig. 3). The mean 
value of the projection is used as the threshold to find this 
location. Since all the images are taken at the same situations, 
the plates have a constant size. Therefore, we can separate the 
upper and lower background as shown in Fig. 4. Similarly, 
using the horizontal projection, we remove the background in 
the left and right parts of the image (see Fig. 4). Two 
thresholds are calculated for finding the left and right lines of 
the plates. Two signals with the length of 200 (pixels) are 
taken from left and right sides of the projection and 
thresholded by their mean values to find the left and right 
limits. 

The middle line of the resulting image divides the image 
into two plates. At this point we can check if the image is 
rotated. A subimage is taken from where the upper right 
corner of the left plate meets the upper left corner of the right 
plate (shown in Fig. 5). This subimage contains edges of the 
two plates. Using the Radon transform orientation estimation 
method proposed in [20] we estimate the orientation of the 
plates. If the image is rotated, we correct the orientation of the 
original image and then follow all the previous steps to 
segment the plates.  

The next step is to use the projection of each plate to 
locate the spots. Fig. 6 shows the horizontal and vertical 
projections of a segmented plate. To locate the spots, we 
calculate the correlations of the vertical and horizontal 
projections with shifts of a symmetric sinusoidal shape signal 
as shown in Fig. 7. This signal is a template signal produced 
by f(x)=|sin(x)| and has 12 local maxima for the vertical 
projection and 8 local maxima for the horizontal projection. 
The period of the signal is equal to the distance between the 
centres of two adjacent spots. If ( )xfv  is the template signal 

and ( )xpv  is the vertical projection, then local maxima of 

( ) ( ) ( )( )kxfxpkr vvv −= ,corr  

occur where some local maxima of ( )kxfv −  match some local 

maxima of ( )xpv  (see Fig. 7). To find the location where all 

the local maxima of ( )xfv  match all local maxima of ( )xpv , 

we calculate ( )krv  for MkM ≤≤−  where M is the location 

where the first local maximum of ( )xfv  occurs. By finding the 

local maxima of ( )krv  in this interval, we get the possible 

locations of the centers of the spots using the template signal. 
As shown in Fig. 7, we usually have more than one local 
maximum, and the global maximum in this interval may not 
necessarily correspond to the maximum matching between the 

template signal and the spots locations. This is due to the rapid 
oscillations of the projection at the corners (see Fig. 6), which 
are created by the edges of the frame. To select the right local 
maximum, notice that the derivative of the projection is higher 
at the corners (see Fig. 8). Thus, the mean value of the 
derivative of the projection at the right and left corners, where 
these rapid oscillations are expected to occur, can be used to 
select the correct local maximum. For each local maximum 
and its expected location of oscillations, we calculate the mean 
derivative and choose the one with the maximum mean value. 
In this way, we eliminate the edges of the frame. The final 
result for X-Gal plate is depicted in Fig. 9. The -leu plate is 
segmented similarly. 
 

   
Fig. 1 A sample image of X-Gal (right) and -leu (left) plates. 

 
 
 
 
 
 
 
                                       (a)                                                  (b) 

Fig. 2 Samples of spots on (a) X-Gal plate, and (b) –leu plate with their 
scores. As shown, in X-Gal plates the score depends on the color, and in 
the –leu plate the score depends on the intensity and texture of the spot. 

 
 
 
 
 
 
 
 
 
 
Fig. 3 Horizontal projection of the image to find the upper edge of the plates. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Vertical projection of the image to find the left and right edges of the 
plates. 
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Fig. 5 Orientation adjustment is done using the specified location of the 
image. The Radon transform of this area can be used to estimate the 

orientation of the plates as described in [20]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 The horizontal and vertical projections of the plate image to locate the 

spots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 The correlation of ( )kxfv −  and ( )xpv  for MxM ≤≤−  where L is 

the size of ( )xfv , and M is the location where the first local maximum of 

( )xfv occurs. 

 
 
 
 
 
 
 

Fig. 8 The derivative of the vertical projection. As shown there are rapid 
oscillations at the left and right corners compared with the middle of the 

signal. 
 

 
Fig. 9 The final segmentation result for X-Gal plate. The –leu plate is 

segmented similarly. 
 
 
B. Segmentation of Spots 
 Following segmentation of the plates, we segment the 
spots. Like in Fig. 6, we calculate the horizontal and vertical 
projections of the segmented plates. Here, the rapid 
oscillations of the projections at the corners no longer exit. 
Therefore, after smoothing the projection signal we can locate 
the spots by calculating the local minima using the derivative 
of the signal. However, since the spots may not have uniform 
intensities, we may miss some local minima of the projection. 
Furthermore, due to the same problem, we may not have 
uniform spacing between the local minima. To avoid this 
problem, we construct the following sequence (see Fig. 10(a)): 
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and calculate its correlation with shifts of a signal shown in 
Fig. 10(b). This signal has the same size as f[n] and is created 
by repeated and equally spaced Gaussian functions with the 
local maxima of 1. The distance between each two local 
maxima is equal to the distance between the centers of the 
spots. The number of the Gaussian functions is equal to the 
number of expected grid lines in each direction (horizontal or 
vertical). The signal shown in Fig. 10(b) is suitable for 
horizontal projection. By finding the maximum of the 
resulting correlation, we locate where these two signals have 
maximum matching and place the grid lines accordingly. 
 

 
(a) 

 
(b) 

Fig. 10 Locating the grid lines. (a) Local minima of the projections. (b) a 
signal to locate accurately the grid lines. After the calculating the correlation 

of (a) with shifts of (b), the local maximum of the result is located in a 
suitable interval, to locate the grid lines. 

 
 By finding the separating lines as shown in Fig. 11, we 
locate the spots. In each block in Fig. 11, we calculate the 

( ) ( )( )kxfxp vv −,corr  

Select the interval MkM ≤≤−  

( )xfv( )xpv  

( )krv  



center of mass of the spot and center a circle around it. We can 
then use the intensity information inside the spot for feature 
extraction. The final segmentation of the spots in X-Gal and –
leu plates is presented in Fig. 12. 
 

 
Fig. 11 Overlaying the grid lines on the X-Gal plate.  

 
 

 
(a) 

 
(b) 

Fig. 12 The final segmentation result for (a) X-Gal plate, and (b) –leu plate. 
 

III.  FEATURE EXTRACTION 

 To score the spots, we extract features from each spot and 
classify them using Artificial Neural Network (ANN). As 
mentioned earlier, in X-Gal plates the color determines the 
score, while in -leu plates, intensity variations specify the 
score. Therefore, we employ separate techniques to extract 
features from spots of each plate. 
 

A. X-Gal Plates 
 Since in the X-Gal plates the score depends on the color 
variations, we use the color histogram of the image as a 
feature vector. We map the color image into a predefined and 
fixed color map to calculate the histogram of the colors. 
However, in practice, the color map may be large (210 in our 
experiments), so we need to reduce the size of the histogram.  
Each point in the color map is assigned an integer number 
between 0 and 5. The number is equal to the score in which 
that specific color occurs more frequently compared with the 
other scores. Therefore, we get a feature vector (histogram) of 
size 6 for X-Gal spots. 
 

B. -leu Plates 
 Since in the -leu plates, the score depends on the intensity 
variations of the spot, it may depend on the local illumination. 
Therefore, we need to first normalize the intensities of the 
spots. Mean value of the spot is not a suitable value for 
normalization, since the growth area (the bright areas of the 
spot) may vary from spot to spot. To find a proper value, we 
first remove the background pixels from the spot and find the 
mean intensity of the rest. The resulting value can be used to 
normalize all pixel intensities before feature extraction. To 
find the background pixels, we map the color image into a 
predefined and fixed color map, which creates a color 
histogram. From our previous knowledge, we know which 
colors belong to background. Therefore, the background pixels 
are specified.  

After the normalization, we calculate the wavelet features. 
We calculate the ordinary wavelet transform of each spot up to 
three levels using Daubechies wavelet basis with length 6 
(db6). The resulting wavelet transform has 10 subbands. From 
each subband I, we calculate the following feature: 
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where M and N are the dimensions of each subband, l is the 
decomposition level, and s represents the subband number 
within the decomposition level l. Therefore, 10 features are 
created in this way. 

  
IV.  CLASSIFICATION 

 To classify each spot into appropriate class, we use ANN.  
For X-Gal spots, we use a perceptron with 3 layers and 3, 3, 
and 1 neurons in the first, second, and third layers, 
respectively. The first two layers use sigmoid transfer 
functions; while the last layer use a saturated linear transfer 
function. Since the output of the network is in the interval 
[0,1], we multiply it by 5 to get the possible values in the 
range [0,5]. To find the score of a spot, the features are 
calculated and fed to the neural network and the output of the 
network is calculated and multiplied by 5, then rounded to the 
nearest integer. Therefore, the final output values are 
{0,1,2,3,4,5}.  

For -leu spots, we use similar ANN with the difference 
that the output is multiplied by 3. Thus, the output values are 
{0,1,2,3}. The two networks are trained separately. 
 

V.  EXPERIMENTAL RESULTS 
  To evaluate the performance of the system, we used a 
data set of 50 images. The segmentations of the spots were 
done correctly (with manual inspection). We used 25 images 
for training and 25 for testing. All the spots were also scored 
manually by an expert to evaluate the system. After training 
the neural network for scoring the X-Gal plates, we obtained 
98.3% accuracy for training samples. Note that we compared 
the automatic scores with the manual scores. The manual 
scores might not be consistent.  Therefore, the real accuracy 
could be higher. Using the trained neural network for the 25 
test images, we obtained an accuracy of 99.7%. The reason we 
get higher accuracy for testing set is because for training set 



we chose the plates with more number of green and blue spots 
(scores 1-5), in order to have the best training set  (in practice 
most of the spots are of score zero). Therefore the training set 
is more difficult to score than the testing set. 

After training the neural network for scoring the -leu 
plates, we obtained 95.2% accuracy for training samples. 
Using the trained neural network for the 25 test images, an 
accuracy of 94.7% was achieved. 
 

VI.  CONCLUSION 
 An automatic method was presented to segment and score 
the spots of X-Gal and –leu plates. Color histogram and 
wavelet features were extracted respectively from spots of X-
Gal and –leu plates. Neural networks were used for scoring the 
spots using the extracted features. Experimental results 
showed  reliability of the system for scoring the spots. 
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