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Comparison of Four Hierarchical and 
Sequential Clustering Methods for Analysis of DTI Data of TLE 

 
 

 
 
 
Abstract: Diffusion tensor imaging (DTI) provides useful 
information about the anatomy of the brain white matter. This 
information includes the shape and geometry of the fiber 
bundles. Temporal Lobe Epilepsy (TLE) is a neurologic disease 
that involves some fiber bundles in the brain, like fornix. The 
information in DTI data can be presented by diffusion 
anisotropy indices. In this paper, Ellipsoidal Area Ratio (EAR) 
is used as an anisotropy index for extracting the arc length 
function for each subject. The mean value and the norm value of 
these arc length functions are used as features for clustering of 
the data. Four data clustering techniques: Hierarchical Cluster 
Analysis (HCA); Fuzzy C-Means (FCM) clustering; k-means 
clustering; and information-theoretic clustering are used. The 
subjects are 12 normal control and 19 patients with temporal 
lobe epilepsy. Decrease of the EAR is found in the TLE group. 
The performance of the FCM and k-means is similar while 
information theoretic clustering creates more compact clusters. 
In comparison, FCM, k-means, and information theoretic 
clustering have better results than the HCA. 
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1. Introduction 
Diffusion tensor imaging (DTI) is an important tool for 

studying the brain white matter. Conventional magnetic 
resonance imaging (MRI) does not provide contrast 
within white matter. It shows the white matter as a 
homogenous tissue without information about the fibers. 
DTI provides information about the shape and orientation 
of the fiber bundles and the myelin sheets [1]. In the 
fibers, diffusion along the main axis is less hindered than 
the perpendicular direction because of the myelin sheets. 
Therefore, diffusion along the main axis is larger. For 
each voxel in the brain, we can make a diffusion tensor. 
Each diffusion tensor can be presented in three-
dimensional (3D) space with an ellipsoid. If diffusion in 
one direction be more than the others it is anisotropic. In 
this case, diffusion ellipsoid can have bar-disk or other 

non-spherical shapes. Each diffusion tensor has three 
eigenvalues and three eigenvectors. If the first eigenvalue 
is much larger than the others, the diffusion ellipsoid is 
bar shape. If the first and second eigenvalues are similar, 
the ellipsoid is disk shape. Because working on vector 
spaces is a difficult, diffusion anisotropy indices are used 
to quantify the diffusion process. The ellipsoidal area 
ratio is a new anisotropy index, proposed in 2009 [2] and 
used in this paper. 

The most common approaches for group analysis are 
voxel-based morphometry (VBM) or region of interest 
(ROI)-based methods. The investigation of the VBM and 
ROI methods is proposed in 2007 by Snook [3]. In the 
VBM method, the images are aligned to a template then 
smoothing is done and statistical analysis is applied to 
determine the damaged regions in the brain. Thersholding 
is done on the resulting statistical maps. The VBM is 
used to investigate diseases like autism, schizophrenia, 
and epilepsy [4, 5]. Smoothing and complete registration 
are the limitations of the VBM method [6].  

Some studies have used ROI-based methods, where an 
ROI is drawn by the operator and all of the analysis is 
limited to that ROI. This method is sensitive to the 
operator’s  choice of the ROI. In addition, determining 
the ROI is a very time consuming process [7].  

In this paper, we use geometry and diffusivity of the 
fibers to determine abnormality of the tissue in the 
temporal lobe epilepsy (TLE) patients. An arc length 
function is defined based on the EAR in the fornix fiber 
bundle [8]. The mean and norm of each arc length are 
extracted and used for clustering of the data. Data 
clustering is done with different approaches. Most of the 
clustering methods cluster the data based on the measures 
that lead to unusual cluster shapes. Information-theoretic 
clustering is used in this paper to make most natural 
shape of the clusters [9, 10]. In this paper, fuzzy c-means 
(FCM) clustering, hierarchical cluster analysis (HCA), k-
means clustering, and information-theoretic clustering are 
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used to separate the TLE patients from normal subjects 
[11-13]. In the end, the performance of these methods is 
compared. 

2. Methods  
The FCM, HCA, k-means, and information-theoretic 

clustering are applied in this work. Before their 
applications, some pre-processing steps are done. The 
inputs are diffusion-weighted and non-diffusion weighted 
images in the DICOM format. First, the tensor is 
calculated and then the EAR is extracted from the 
eigenvalues (Equation (1)):  
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where (λ1, λ2, λ3) are the eigenvalues and p is a constant. 
The estimation of EAR has the least error when p ≈ 
1.6075 [4]. The EAR is a representation of the surface 
and curvature of the ellipsoid and its robustness to noise 
is more than the other anisotropy indices like fractional 
anisotropy (FA). Therefore, we use the EAR in this 
paper. 

Next, the EAR values in a bundle are sampled and 
averaged at each cross-section along the bundle. Then, 
we use spline fitting to produce a smooth function of arc 
length. As we can see in Fig. 1, the EAR value at points 
A, B, C, D, E are averaged and become the value of the 
function at the points A, B, C, D, and E along the x-axis 
of the arc length function [8]. 
 
  

 
Fig. 1: A fiber bundle is shown on the left and its arc length function is 

shown on the right [8]. 
 

The arc length function is a set of points that show the 
mean EAR value in each cross section along the fiber. In 
our analysis, we need a feature vector. Therefore, we 
calculate the mean value and frobenius norm of these 
points as the feature vector. This vector is used for cluster 
analysis. 

 
2.1 HCA Technique 

The HCA method is a statistical method for finding 
relatively homogenous clusters of cases based on 
measured characteristics. It starts with each case in a 
separate cluster and then combines the clusters 
sequentially, reducing the number of clusters at each step 
until only one cluster is left. When there are N cases, this 
involves N-1 clustering steps. This hierarchical clustering 
process can be represented as a tree, or dendrogram, 

where each step in the clustering process is illustrated by 
a joint of the tree [11]. 
2.2 FCM Technique 

FCM is a data clustering method based on optimizing 
the objective function: 
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     It requires every data point in the data set to belong to 
a cluster to same membership degree. The purpose of 
FCM is to group data points into different specific 
clusters. Let },...,,{ 21 NxxxX = be a collection of 
data. By minimizing the objective function (2), X is 
classified into C homogenous clusters. Here, ijμ is the 

membership degree of data ix to a fuzzy cluster set 

jv and },...,,{ 21 cvvvV = are the cluster centers. 

CNijU ×= )(μ is a matrix in which ijμ  indicates the 
membership degree of data point i to the cluster j. The 
value of U should satisfy the following conditions:   
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     The ji vx −  is the Euclidean distance between ix  

and jv . The parameter m is called fuzziness index, which 
controls the fuzziness of membership of each data. The 
goal is to iteratively minimize the aggregate distance 
between each data point in the data set and cluster centers 
until no further minimization is possible. The whole FCM 
process can be described in the following steps. 
Step 1: initialize the membership matrix U with random 
values, subject to satisfying conditions (3) and (4). 
Step 2: calculate the cluster centers V using the following 
equation: 
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Step 3: get the new distance: 

jiij vxd −
        Ni ,...,2,1=∀      Cj ,...,2,1=∀         (6) 

Step 4: update the fuzzy partition matrix U: 
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Else 1=ijμ   
Step 5: if the termination criteria are reached, then stop. 
Else go back to step 2.  

     The suitable termination criteria can be set by 
checking whether the objective function is below a 
certain tolerance value or its improvement compared to 
the previous iteration is below a certain threshold. 
Moreover, the maximum number of iteration cycles can 
be used as a termination criterion [12]. 
2.3 K-means Clustering 

K-means clustering is a partitioning method. Unlike 
hierarchical clustering, k-means clustering operates on 
actual observations (rather than the larger set of 
dissimilarity measures), and creates a single level of 
clusters. This method treats each observation as an object 
having a location in space. It finds a partition in which 
objects within each cluster are as close to each other as 
possible, and as far from objects in other clusters as 
possible. The distance measure depends on the kind of 
data. Each cluster in the partition is defined by its 
member objects and by its centroid or center. The 
centroid for each cluster is the point to which the sum of 
distances from all objects in that cluster is minimized. K-
means uses an iterative algorithm that minimizes the sum 
of distances from each object to its cluster centroid, over 
all clusters. 

This algorithm moves objects between clusters until 
the sum cannot be decreased further. The result is a set of 
clusters that are as compact and well-separated as 
possible. 
2.4 Information-theoretic Clustering 

Information-theoretic clustering is used to discover a 
most natural clustering of a data set. 

The procedure starts with getting as input a set of 
clusters that are made by k-means clustering. The purpose 
is to reform the clusters to find the most compact status. 
Therefore, we should calculate the volume after 
compression (VAC) measure. Let dRx ∈

r
 be a point of 

cluster C and pdf(x) be a probability density function 
associated with C. Each pdf can be Gaussian, uniform or 
Laplacian. The VAC of coordinate i of point 
xr corresponds to:  
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Then, we choose the pdf with minimum VAC for the 
data. After that, we should calculate the covariance of the 
data in each cluster. Then, the eigenvalues and 
eigenvectors can be extracted from the covariance matrix 
( TVVΛ=Σ ). V is the eigenvector matrix and Λ is a 
diagonal matrix of eigenvalues. To measure the distance 
between two points xr and yr , taking into account the 
structure of the cluster, we use the Mahalanobis distance 
defined in the following equation:  
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Now, we have two criteria: VAC; and Mahalanobis 

distance. We should change the points in the cluster for 
minimum VAC and mahalanobis distance.  The points 
that have large distance from the cluster center should be 
removed from that cluster. These removed points can be 
assigned to other clusters or considered as noise or outlier 
(they are not related to any cluster) [9,10].  

In this study, HCA, FCM, k-means, and information-
theoretic clustering approaches are applied to a number of 
clinical datasets with gold-standard classification. The 
clustering techniques are performed using Matlab. 

3. Experimental Results  

3.1 Subjects 
We studied DT-MRI data of 19 patients with TLE (11 

with abnormality in the left temporal lobe and 8 with 
abnormality in the right temporal lobe) and 12 normal 
control subjects. DT-MRI data were acquired with 26 
gradient directions on a 3T MRI system (GE Medical 
Systems, Milwaukee, WI, USA) at Henry Ford Hospital, 
Detroit, MI, USA. For each subject, forty axial slices 
with 2.6 mm thickness and 256×256 matrix size were 
acquired. 
3.2 Experimental Results 

First, the arc length function is calculated from the 
EAR values in the fornix fiber bundle. Fig. 2 and 3 show 
the arc length function for the left and right fornix. The 
blue curves belong to the control subjects and the red 
curves belong to the TLE patients. The mean EAR value 
and the norm are calculated and are used as input data for 
the next steps. 

The TLE and control subjects are grouped using HCA, 
FCM, k-means, and information-theoretic clustering 
methods. 

The right fornix is used for the clustering of the right 
TLE patients against the controls. For clustering the left 
TLE patients against the controls, the left fornix is used. 
The results are shown in Figs. 4-7. Fig. 4 illustrates the 
dendrogram of the HCA method on the right fornix. The 
cluster in the right side of the dendrogram is related to the 
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TLE patients. The subject #17 is a left TLE patient but in 
this technique this patient is misclassified in the right 
TLE group. Subject #27 is a right TLE patient but in this 
method this point is assigned to the control group. Fig. 5 
shows the clustering results of the left TLE patients. The 
subjects in the right side cluster are left TLE patients.  
Subjects #1 and 20 are misclassified. Subject #1 is a left 
TLE patient but it is clustered in the other cluster (cluster 
in the left side). Subject #20 is a right TLE patient but it 
is clustered in the left TLE patients. 

In Figs. 6-7, the results of the FCM method on the 
right and left fornix are shown. 

 

  
Fig. 2: The arc length function of the left fornix fiber bundle (blue: 
normal, red:patient). 
 

 
Fig. 3: The arc length function of the right fornix fiber bundle (blue: 
normal, red: patient). 
 

 
Fig. 4: The dendrogram of the HCA method applied on the right fornix. 

 
Fig. 5: The dendrogram of the HCA method applied on the left fornix. 

 
 
The misclustered data in Figure 6 is subject #1 and in 

the right TLE patients, subject #3 is mis-clustered.  The 
number of the misclassifications in the FCM method is 
less than the HCA method. 

  
 

  
Fig. 6: The results of the FCM method on the left fornix. 

 

 
Fig. 7: The results of the FCM method for the right fornix. 

 
Fig. 8 shows the results of the K-means clustering. It 

shows that this method works like the FCM method on 
the left fornix. The result of the right fornix is slightly 
different. Fig. 9 shows that the subjects #3, 5 are 
misclassified. 
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Fig. 8: The results of the k-means clustering for the left fornix. 

 

 
Fig. 9: The results of the FCM method for the right fornix. 

 
When we apply the information-theoretic clustering 

method, we obtain some points that are not assigned to 
any cluster (Figs. 10-11). In Figs. 10-11, the line shape 
clusters are extracted and shown in blue and red, 
respectively. The green points are the outliers. 

TABLE I illustrates the number of the data points that 
are misclassified by different clustering methods. 
Information-theoretic clustering method eliminates the 
data from clusters to make the shape of the cluster most 
natural. 
 

 
Fig. 10: The results of the information-theoretic clustering for the right 
fornix. 

 
Fig. 11: The results of the information-theoretic clustering method for 
the left fornix. 
 

TABLE I: The Number of Missclasifications in Different Clustering 
Methods.  

Method Right fornix Left fornix 

HCA 2 2 

FCM 1 1 

K-means 2 1 

Information-
theoretic clustering 

3 (outlier) 5 (outlier) 

 

4. Discussion  
The experimental results illustrate that the patients 

have smaller EAR values than the controls. This is 
consistent with the results of previous works that used FA 
[14]. From the results presented in the previous section, it 
can clearly be observed that the number of 
misclassifications by the FCM is less than those of HCA 
and k-means (TABLE I). In simple terms, the FCM 
appears to achieve better classification than HCA and k-
means. The number of the left TLE patients that are 
misclassified by the HCA is 2 and for the FCM is one. 
The number of right TLE patients that are misclassified 
with HCA is 2. In the right TLE, FCM has only one 
misclassification. The information-theoretic clustering 
classifies some of the data points as outliers but extracts 
line shaped clusters and other natural cluster shapes quite 
well.  

5. Conclusion   
In this study, different clustering methods are used to 

classify controls against TLE patients. The performance 
of these methods is presented and their results are shown. 
The performance of the FCM and information-theoretic 
clustering techniques are superior to the HCA and k-
means because of the number of misclassifications and 
the natural cluster shapes. 
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