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Abstract: Recently, fMRI multisubject analysis has 
emerged as a new topic to embrace the differences in 
brain response. State-of-the-art multisubject methods -
like general linear model (GLM) - suffer from limited 
sensitivity. A novel method based on feature space fuzzy 
cluster analysis for fMRI group inference is introduced 
to overcome this limitation. In the proposed method, a 
brain tensor is obtained using the cross-correlation 
analysis of each subject. Then a feature space is 
constructed from the brain tensor. Fuzzy cluster 
analysis of the proposed feature space generates a map 
of "membership to active cluster”. Statistical 
significance of the membership map is then assessed 
using randomization to derive the group inference 
activation map. This method is applied to experimental 
and simulated multi-subject fMRI data and results are 
compared to those of the GLM. We show that the 
proposed method detects more activated regions in 
analyzing experimental data and considerably more 
true positives (30-40%) at all false alarm rates in the 
simulation study. This means that the proposed method 
has higher detection sensitivity compared to GLM. 
 
Keywords: fMRI, group inference, feature space 
clustering, visual task. 
 
1 Introduction 
 
Functional magnetic resonance imaging (fMRI) 
allows evaluation of brain activity when a subject 

performs cognitive, sensory, or motor tasks, via 
measuring local variations of hemodynamic over 
time [1]. Conventional fMRI analyses methods 
analyze the data of every subject separately. But 
multisubject analysis of fMRI data deals about the 
differences or commonalities of brain response 
among different subjects. In single-subject 
analysis, it is assumed that each subject has a fixed 
(observed) activation and therefore discounts 
random variations from subject to subject [2] and 
only a scan-to-scan variance is considered. 
However, the variability in activation effects, from 
subject to subject, should be assessed. In 
multisubject fMRI studies, both variations are 
included and the resulting response reflects the 
pattern of response for a group of subjects. When 
the objective of the analysis is a case study, the 
fixed-subject-effect method is used. On the other 
hand, for deduction about the population, the 
random-subject-effect method is used. Some multi-
level methods have been introduced for such 
analyses. These statistical model-based methods 
are based on General Linear Model (GLM) 
framework. In this framework, a statistical map is 
first derived for each subject. This process is a uni-
variate analysis. Using the maps of all subjects, the 
"effects" and "standard errors" are then combined. 
Finally, the decision is made with the use of group 

Hesamoddin Jahanian 
Jahanian@ipm.ir 

University of Tehran, Tehran, Iran 
School of Cognitive Sciences, IPM, Tehran, Iran 

 

Seyyed Mohammad Shams 
msshams@ipm.ir 

University of Tehran, Tehran, Iran 
School of Cognitive Sciences, IPM, Tehran, Iran 

 
Gholam Ali Hossein-Zadeh 

ghzadeh@ut.ac.ir 
University of Tehran, Tehran, Iran 

School of Cognitive Sciences, IPM, Tehran, Iran 

Hamid Soltanian-Zadeh 
hamids@rad.hfh.edu 

University of Tehran,Tehran, Iran 
School of Cognitive Sciences, IPM, Tehran, Iran 

Image Analysis Lab., Radiology 
Department, Henry Ford Health System, USA 

 

13th ICEE2005, Vol. 3
Zanjan, Iran, May 10-12, 2005. 



t-test [3] or similar statistics. The effects of similar 
voxels from different subjects are combined using 
a variety of approaches. In multi-level approaches, 
the effect and standard errors are merely used in 
group analysis level, resulting in a noticeable 
reduction in the sensitivity of analysis to time 
series [3].  
Here, we propose a novel method based on feature 
space analysis of fMRI data to deal with this issue. 
Clustering method has been successfully used for 
single subject fMRI activation detection [4]. Here, 
by introducing feature space corresponding to the 
time series of each voxel along all subjects, we 
employ it for fMRI group analysis. 
 
2 Materials 
 
2.1 Experimental fMRI Data 
 
A set of sensory-motor fMRI data is analyzed in 
this research. This set is provided by fMRI data 
center (http://www.fmridc.org). They were 
acquired during an event-related fMRI experiment 
in a 1.5 T scanner. During the experiments, 128 
T2*-weighted volume images were acquired using 
asymmetric spin echo pulse sequence. Each 
volume image consisted of 16 slices and each slice 
was composed of 64×64 pixels. A set of 
anatomical images was also acquired from each 
subject, which consists of 128 sagital slices with 
256×256 pixels. Eleven young non-demented 
subjects were selected from these data. Their 
functional images were motion corrected using the 
AFNI software package (Medical College of 
Wisconsin, Milwaukee, WI) [5]. Then their 
anatomical images were transferred to the standard 
space of Talairach and Tournoux and the resulted 
transform is used for spatial normalization of 
functional images in the AFNI software package. 
The anatomical images were used to localize the 
active regions in the AFNI software. For each 
volume of functional data, the sub sampling 
process produced a volume image with 54×64×50 
voxels and voxel size of 3×3×3 mm. Linear drift 
and the mean component were removed from time 
series of each voxel. 
 
2.2 Simulated fMRI Data 
 
Two groups of simulated data were used in this 
study. The first group consists of 11 sets of 
simulated rest data, which is used for obtaining the 
histograms of parameters under null hypothesis (no 
activation in the group). The second group consists 

of 11 sets of simulated data that have some 
predefined active voxels. 
Each set of the simulated data contains 172,800 
time series with 124 points. For simulating the rest 
data (group 1), Gaussian noise was used with the 
mean value similar to real data sets, and variance 
of 2% of the mean value. In the second group, in 
addition to the Gaussian noise, activation was 
added to some voxels according to the spatial 
pattern depicted in Fig. 1. The contrasts of the 
activation regions varied as 1%, 1.25%, 1.5%, and 
1.75% horizontally and the noise variances were 
selected randomly in the interval [4 10]. Simulated 
activation time-series consisted of 124 points, 
which have been obtained through convolving the 
stimulation pattern with the hemodynamic 
response function (HRF) and then adjusting the 
amplitude of the resultant signal to the desired 
contrast. The stimulation pattern was the same as 
that of the experimental data.  The HRF was 
modeled according to the following Gamma 
function: 
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where τ shows the location of the peak and σ is 
related to the width of the peak [6]. In order to 
model HRF variations, parameters τ and σ were 
selected randomly within intervals [3   7] and [0.05 
0.21], respectively. This process was applied to 
each voxel.  
 

 
Fig. 1. The spatial pattern of activation in the simulated 

data. 
 

3 Methods 
 
The proposed method consists of the following 5 
steps: 
1) A Brain tensor is extracted for each brain 

voxel whose elements are the cross-correlation 
of that voxel time-series with the reference 
signal in different subjects (described in 
Section 3.1).  

2) An overall feature space is obtained from the 
brain tensor (described in Section 3.2). 

(a) (c) 
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3) The Fuzzy c-means (FCM) algorithm is then 
applied to the overall feature space and the 
map of "membership degree to active cluster" 
is obtained (described in Section 3.3).  

4) The statistical parametric map corresponding 
to the "membership degree" (obtained in 
previous step) is derived (described in Section 
3.4). 

5) The statistical parametric map is thresholded at 
the desired confidence level (p-value) 
(described in Section 3.5). 

Figure 2 summarizes the proposed method. 
 
3.1 Obtaining Brain Tensor 
 
Here, we have used the cross correlation of each 
time-series and the reference signal, as the feature 
of that time-series. The reference signal is 
produced by convolving the stimulation pattern 
with the gamma function (1). In this step, for each 
voxel of the brain, we produce n features 
corresponding to n subjects. In other words, we 
have a tensor of size n for each voxel, where each 
element comes from one of the subjects. 
 
3.2 Feature Space Extraction 
 
We cannot apply the clustering algorithm directly 
to the brain tensor because each tensor element has 
the same importance as the others. But clustering 
algorithm assumes different importance for each 
tensor element because they would have different 
directions in brain tensor feature space. For 
example activation in subject 1 points to a 
direction in a feature space which is different from 
that of subject 6. Therefore in spite of their same 
importance they will be put in different clusters 
and this will mislead the algorithm in grouping the 
time series properly. Considering this fact, we 
should combine the obtained tensor elements so 
that each feature has the same contribution in the 
overall feature space. 
We have used L2 norm to combine the elements of 
each tensor because it has the aforementioned 
properties. Thus, in this step, we obtain a feature 
space whose elements are the L2 norms of the 
tensor elements obtained in Section 3.1. 
 
3.3 Fuzzy Clustering 
 
The well known fuzzy C-means clustering 
algorithm is then applied to the features obtained in 
the previous step. In this paper, we use the cluster 
validity measure proposed by Fadili et al. in [7]. 
We   also   used   the   fuzziness   index    m=2    as  

Brain Tensor

. . .

Subject 1 Subject 2 Subject n

Clustering

 
Fig. 2. Summary of the proposed method. 

 
suggested in [7]. After FCM converges, the cluster 
with the most similar centroid to the reference 
pattern is chosen as the active cluster and the 
membership degrees to this cluster provide us with 
the map of "membership to active cluster”. In the 
case of suggested feature space, this is the cluster 
with a centroid that has maximum value of L2 
norm.  
 
3.4 Statistical Significance Assessment 
 
To assess the statistical significance of the 
obtained membership degree map, we need to have 
the pdf fu(u|H0). In this paper, we use the method 
proposed by Jahanian, et al. [4] to find the 
statistical significances corresponding to active 
membership degrees. In this method, an empirical 
histogram is constructed using randomization. This 
histogram estimates the required pdf fu(u|H0). 
Using this histogram, one finds a threshold 
corresponding to the desired p-value.  
 
3.5 Obtaining Statistical Parametric Map 
 
Thresholding the “membership to active cluster” 
map of brain voxels with the threshold obtained in 
previous step generates statistically meaningful 
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results. Especially, this step is needed when we 
intend to compare detection accuracy of different 
methods. 
 
4 Experimental Results 
 
Simulated and experimental fMRI data sets, 
described in Section 2, have been used to evaluate 
the proposed method. The proposed method was 
compared to GLM multi-subject analysis [3]. The 
comparison study should be done at the same false 
alarm rates. We computed the equivalent 
thresholds for the proposed method as described in 
Section 3.4. Since the proposed method is a single 
level analysis and GLM is a two level analysis 
method, we used the thresholds obtained from the 
simulated data to achieve similar conditions for 
both methods. Analysis of rest data produces 
realizations of its parameter under the null 
hypothesis, which can be used to construct an 
empirical histogram. This histogram is used for 
computing the thresholds of the GLM parameter 
for different false alarm rates.  

The methods were applied to both simulated and 
experimental fMRI data sets. Fig. 3 shows the 
number of true positives in the simulated data set 
at different false alarm rates in the interval  
α ∈  [0.0001 0.001]. Fig. 4 shows the activated 
regions detected by both methods at the false alarm 
rate of 0.0001. Results show that the proposed 
method provides improved detection sensitivity 
over the GLM method. 
Figs. 5, 6 show activated regions in the 
experimental data set, superimposed on the 
anatomical MRI images. Single voxels were 
removed from the activation maps. Table 1 lists the 
activated regions detected by the proposed method 
and GLM. As shown in Table 1 and Figs. 5, 6, 
both methods detected activation in Occipital 
Cortex (BA 17, 18), Thalamus, and Precuneus 
which were also reported in previous fMRI 
investigations of visual task [8-11]. 
The proposed method also detected activations in 
Cerebellum, Superior Temporal Gyrus, Cingulate 
Gyrus (BA 24), Precentral Gyrus, Superior Frontal 
Gyrus and Cuenus, where GLM method did not 
detect any activation (see Fig. 5).  
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Fig. 3. True detected active voxels (true positives) in the simulated data for GLRT and GLM methods. 

 
 

 
(a) (b) (c) 

Fig. 4. The spatial pattern of activation in simulated data (a), Activated areas detected by feature space analysis (b), and 
GLM method (c) at false alarm rate of 0.0001. 
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Fig. 5. Different views of brain activated areas, detected by applying feature space analysis on the visual task 
group data. The activated areas are overlaid on the high resolution anatomical images. Activation is detected 
in: a) Occipital Cortex and Superior Frontal Gyrus; b) Superior Temporal Gyrus and Thalamus; c) Precentral 
Gyrus and Cerebellum; d) Precuneus; e) Cuneus; f) Cingulated Gyrus; g) Cerebellum; h) Occipital Cortex, 
Thalamus and Cingulate Gyrus. 
 
 
 

 
Fig. 6. Activated areas detected by GLM, in different views of brain (corresponding to the views of Fig. 5). 
The activated areas are overlaid on the high resolution structural images. Images show areas in: a) Occipital 
Cortex (detected) and Superior Frontal Gyrus (not detected) ; b) Superior Temporal Gyrus (not detected) and 
Thalamus (detected); c) Precentral Gyrus (not detected) and Cerebellum (not detected); d) Precuneus 
(detected); e) Cuneus (not detected); f) Cingulated Gyrus (not detected); g) Cerebellum (not detected); h) 
Occipital Cortex (detected), Thalamus (detected)  and Cingulate Gyrus (not detected). 
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Table 1: Activated areas detected by two analysis 
methods. 

Activated Area GLM 
Feature 
Space  

Analysis 
Occipital Cortex b b 

Thalamus b b 
Precuneus b b 

Precentral Gyrus -- b 
Superior Frontal Gyrus -- b 

Cerebellum -- b 
Superior Temporal 

Gyrus -- b 
Cingulate gyrus -- b 

Cuenus -- b 
 
5 Discussion and Conclusion 
 
A novel method, based on feature space clustering 
for activation detection in group fMRI data, is 
presented. This method is applied to simulated and 
experimental fMRI data.  
The use of cross-correlation for obtaining brain 
tensor benefits the method with decreasing the size 
of data and speeding up next analysis stages. In 
addition, clustering the raw fMRI time series may 
lead to stability problems and the risk of clustering 
on noise rather than on the activation because of 
the poor SNR of fMRI signal. 
The comparison between the results of the 
proposed method and GLM on the simulated data 
shows that the proposed method detects more 
active voxels (about 30-40%) at all false alarm 
rates. It means that the proposed method has 
considerably improved detection sensitivity over 
GLM. 
Also, the proposed method detects more significant 
activated regions in experimental data compared to 
the GLM method. The proposed method detected 
activated regions in Cerebellum, Superior 
Temporal Gyrus, Cingulate Gyrus (BA 24), 
Precentral Gyrus, Superior Frontal Gyrus and 
Cuenus, where GLM method failed to detect them. 
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