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ABSTRACT 

 

The aim of this paper is to present application of higher 

order statistics for Surface Electromyogram (sEMG) 

signal pattern classification. The new pattern recognition 

algorithm exploits a multilayer perceptron (MLP) as the 

classifier and the feature vector is a combination of 

cumulants of the second-, third- and fourth- orders and 

Integral of Absolute value (IAV) of two channel sEMG 

stationary segments. The detected sEMG signals are used 

in classifying four upper-limb primitive motions, namely, 

elbow flexion (F), elbow extension (E), wrist supination 

(S) and wrist pronation (P). The simulation results 

illustrate considerable accuracy of the proposed 

framework in sEMG pattern recognition. 

 

1. INTRODUCTION 

 

The Surface Electromyogram signal is the electric 

manifestation of neuromuscular activity [1] and is 

collected non-invasively on the skin by the means of 

appropriate electrodes [2]. It is a stochastic complex signal 

that depends on anatomical and physiological properties of 

the contracting muscle [1]. Due to characteristics of sEMG 

it is well established that sEMG recordings from an 

amputee’s residual muscles can be used to control 

prosthesis movement. The control strategy is based on 

sEMG pattern classification detected during muscular 

contraction. Lots of researchers have made attempts to 

present new methods of sEMG processing such as AR 

Modeling [3]-[5], Statistical Pattern Recognition 

techniques [6], Discrete Wavelet Transform [7] and 

Artificial Neural Networks [8]-[10].  

Design of sEMG pattern recognition system consists 

of several stages, sEMG detection, formation of the 

motion classes, feature extraction, developing 

classification algorithm and estimation of the classification 

error. The authors believe that the most critical point is the 

extraction of effective features from sEMG signal, while 

the classification performance is more profoundly affected 

by the choice of features [11]. This investigation explores 

pattern recognition of sEMG signals produced by biceps 

brachii and triceps brachii muscles to identify four 

motions, namely, elbow flexion, elbow extension, wrist 

supination and wrist pronation.  

The motivation behind this study is to exploit higher 

order statistics in sEMG feature extraction in a two 

channel sEMG signal motion classification problem.  

During the past years there has been an everyday 

increasing application for higher order statistics. Adaptive 

filtering, blind equalization, biomedical signal processing 

and many other research areas have been gained from 

higher order statistics. These statistics are dramatically 

capable in solving problems where the interested signal is 

non-Gaussian and corrupted by Gaussian measurement 

noise, while there are blind to any kind of a Gaussian 

process [11]. In the past decade due to shortage of 

analytical tools, the sEMG signal was treated to be 

Gaussian. Assuming semi-Gaussianity for sEMG leads us 

to use higher order statistics.     

In order to elaborate capability of cumulants based 

features we have performed two experiments. In the first 

one we have merely introduced the IAV feature of sEMG 

signal to the classifier. Secondly, the above experiment has 

been done when the input feature vector consists of IAV 

and the cumulants of the second-, third- and fourth- orders 

of sEMG signal. Although the calculation of cumulants 

based features increases computational complexity, 

significant advances in sEMG pattern classification has 

been achieved. 

 

2. METHOD 

 

In the following, we first introduce the sEMG detection 

setup and experimental procedure. Next we propose the 

higher order statistics in sEMG pattern classification. Then 

the MLP neural network, based on BFGS learning 

algorithm, will be explored. 
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Figure 1. A sample detected sEMG signal from biceps and 

triceps during Flexion LOW. 

 

2.1. sEMG Detection System 

 

The sEMG signals were picked up from biceps brachii and 

triceps brachii of a healthy 24 years man by two pairs of 

Ag/AgCl electrodes. Each of the electrodes in a pair was 

separated from the other by 20mm. The sEMG signal was 

amplified and band-pass filtered. A 50Hz notch filter then 

applied to the detected signal. Sampling rate was set at 

1000 using a home made 12 bit A/D converter board. The 

main parameters of system is as follows, 

The input impedance:                          100 M ; 

The common mode rejection ratio:      > 90dB; 

The amplification scale:                       10~20,000. 

The man was asked to actuate HIGH, MED and LOW 

contraction each of the biceps and triceps muscles. HIGH, 

MED and LOW were defined as 90%, 50% and 10% of 

the MVC (Maximum Voluntary Contraction), respectively. 

Continuous recordings were made from both muscles for 

the 5s periods. Each record subdivided into 200ms 

segments, yielding 25 stationary time series per 

contraction which were then used for the signal pattern 

recognition. The subject did the experiment three times for 

each level of contraction. Fig. 1 shows a sample of sEMG 

signal from biceps and triceps during Flexion LOW.  

 

2.2. sEMG Feature Extraction 

 

Conventionally, sEMG signal classification has been 

performed by introducing time domain features as input to 

the classifier. The most popular applicable features that 

have been extracted in the time domain are IAV, WAMP 

Wilson Amplitude), HIST (Histogram) and AR 

coefficients [6]. The most challenging problem of these 

approaches is that the classification rate is low, and they 

are not robust to measurement noises due to motion 

artifacts and also instrumentation amplifier interference 

[12].  

Figure 2. Feature space of IAV feature on linear scale, for 

biceps and triceps sEMG’s for four motions in all three 

contraction states [12]. 

 

 

Following is the description of the most frequently 

used sEMG feature, IAV, plus one newly proposed feature 

investigated for this research.        

IAV of sEMG signal is calculated as 
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Fig. 2 shows the IAV feature space of the set sEMG 

signal collected for this paper. As shown, the four motions 

clusters are not completely distinct.   

Our solution to overcome this problem is to use 

Higher Order Statistics. Three types of statistics known as 

second-, third-, and forth order cumulants, have been 

derived over stationary segments of sEMG signal as 

statistical features. Assuming zero mean time series 

segments, these features can be determined as follows 

[11]: 
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        The curves presented in Fig. 3 show the 

characteristics of second-, third-, and fourth- order 

cumulants of sEMG signal detected from biceps and 

triceps versus time lag during experiment with 10% of 

MVC ( 2 and 3 are considered fixed for third- and fourth 

order cumulants). The variance of the IAV feature vector 

due to normalized sEMG signal recoded during flexion 

LOW are 4109.2  and 5105.1  for biceps and triceps.  
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Figure 3. Characteristics of second-, third-, and fourth order cumulants of sEMG signal detected from biceps and triceps 

versus time lag during experiment with 10% of MVC ( 2 and 3 are considered fixed), a to f. 

 

These values are 0011.0 , 5104.7   for second-order and 
5103.3  , 61002.1  for third-order. The variances for 

forth-order cumulants are 6108.8  , 8102  , 

respectively. Obviously, using statistical characterization 

decreases variation among different signals in the same 

class which enables us to classify the patterns more 

efficiently. 

 

2. 3. sEMG Pattern Classification 

 

The multilayer perceptron (MLP) is characterized by a set 

of input units, a layer of output units and a number of 

hidden layers. Each input unit is connected to each unit in 

the hidden layer in a feedforward fashion. Each hidden 

unit is connected to the neurons in the succeeding layer, be 

it hidden or output, in a similar way. The input to each unit 

is given by the summation of all of the individual weighted 

outputs passed from the previous layer. The output is then 

a function of the summation of these inputs.  

The most important factor in the MLP structure 

selection is the choice of the number of the hidden 

neurons. This has been done in our work by trial and error. 

Different MLP networks have been trained and the one 

with the smallest number of hidden neurons, allowing 

acceptable level of correct classification has been selected. 

The weights are tuned during the learning period of 

the network using the gradient method and 

backpropagation algorithm. In the gradient method of  

learning, the weights are updated in each epoch according 

to the information of gradient of the error surface by:  

kk1k Axx         (5) 

where   -the learning coefficient- is computed at each 

epoch and is the direction vector of minimization in the 

k -th epoch. In realization of the training algorithm, we 

have exploited Quasi-Newton Broyden–Fletcher–

Goldfarb– Shanno (BFGS) algorithm which is one of most 

successful ones in the published studies, in which 

k
1

kk gHA          (6) 

where kH  is the approximated Hessian matrix and kg is 

the gradient vector of the error function, in the k -th 

epoch. 

The network training is accomplished by varying the 

connection weights and the neuron threshold values using 

the BFGS algorithm. In the first study, the MLP is a three-

layer network, with 2, 4, 4 neurons for input, hidden and 

output layers, respectively. The input feature vector is the 

IAV the sEMG detected from biceps and triceps. In the 

second study, the MLP is a also three-layer network, but 

with 32, 20, 4 neurons for input, hidden and output layers, 

respectively. The input feature vector is the cumulant 

based features of the signal. The hidden and output 

neurons are characterized by a sigmoidal activation 

function. The input feature vector consists of 5 points 

representing 3 cumulants (second-, third-, and forth order) 

for each recording channel and 2 IAV values 

corresponding to biceps and triceps muscles. 
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Table I. sEMG pattern recognition ratio. All the 

values are in [%]. 

Type 

 

IAV % HOS +IAV 

Training Testing Training Testing 

Flexion 87.80   87.06    90.55    90.20    

Extension 99.45   99.33 99.40    98.40    

Supination  67.92    63.67 94.40    89.40    

Pronation 82.40 75.60 84.48 84.80 

Total 84.89 81.41 92.20 90.70 

 

The input feature vector is normalized with respect to 

the maximum absolute value of the vector. As a result the 

absolute values of the elements of the input vector are 

within the range of zero to one.  

 

3. NUMERICAL RESULTS 

 

Two feature vectors (IAV and HOS–IAV) of each channel 

have been computed to train the MLP, for the purpose of 

classification. After training, the MLP has been tested by 

both of the testing and training data. Table I illustrates the 

classification results. 

  

4. CONCLUSION 

 

Following the idea of exploiting HOS in sEMG pattern 

recognition, in this paper the comparative performance of 

IAV feature and cumulant-based features have been 

investigated. Although the results show the capability and 

efficiency of the proposed algorithm in sEMG pattern 

classification at the expense of computational complexity, 

the cumulants adopted in this work are still ad hoc. 

Future works may involve a detailed approach to 

choosing the time lag for the cumulants and analyzing the 

training behavior of the neural network when dealing with 

the Higher Order Statistics, in more depth. 
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