
  

 

Abstract— A temporal point process is a stochastic time 

series of binary events that occurs in continuous time. In 

computational neuroscience, the point process is used to model 

neuronal spiking activity; however, estimating the model 

parameters from spike train is a challenging problem. The state 

space point process filtering theory is a new technique for the 

estimation of the states and parameters. In order to use the 

stochastic filtering theory for the states of neuronal system with 

the Gaussian assumption, we apply the extended Kalman filter. 

In this regard, the extended Kalman filtering equations are 

derived for the point process observation. We illustrate the new 

filtering algorithm by estimating the effect of visual stimulus on 

the spiking activity of object selective neurons from the inferior 

temporal cortex of macaque monkey.  Based on the goodness-

of-fit assessment, the Kalman particle filter provides more 

accurate state estimate than the conventional methods. 

 

Index Terms — Stochastic filtering,  Kalman filtering, Point 

process, Generalized linear model, Spike train, Peristimulus 

time histogram, Inferior temporal cortex. 

I. INTRODUCTION 

STABLISHING and quantifying the correlation of 

neural spiking activity with an external stimulus is the 

focus of much investigation. Neurons generate series of 

spikes in response to the stimulus. A spike train is a 

stochastic process composed of a sequence of binary events 

that occur in continuous time. The point process theory is 

used as a stochastic framework to model the nonlinear 

property of neural spike train; however, due to dynamical 

behavior of neural systems many challenges are still 

remain[1], [2]. 

Point process framework is commonly used to model 

neuronal spiking activity. This framework allows dynamic 

modeling which is an important tool in computational 

neuroscience for studying neural dynamics [2]. Neural 

receptive field plasticity, neural coding analyses, neural 

spike train decoding, neural prostheses, analyses of learning, 
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and control algorithms design for brain machine interfaces  

are examples of the neural dynamics [3], [4].  

Since point process filtering method assumes that the 

posterior density of the state given the discrete observation is 

Gaussian and the recursive estimation is derived with this 

assumption [4], therefore effective state estimation restricted 

to Gaussian random variables. One approach for applying 

state space estimation algorithm for the nonlinear and 

dynamic system is use of extended Kalman filter [5]. 

In this paper, in order to generalize the point process 

filtering approach for the states of nonlinear system, we 

combine the extended Kalman filtering theory with point 

process modeling. Based on the point process observation, 

the extended Kalman filtering recursive equations are 

derived and applied for the estimation of the model 

parameters which were considered as states of the system. 

We illustrate the properties of the hybrid filtering process by 

filtering the spiking activity of neurons from inferior 

temporal cortex of the macaque monkey while the animal 

performs the passive fixation task. 

II. MATERIALS AND METHODS 

A. State-Space Model with Point Process Observations 

A stochastic neural point process can be completely 

characterized by its conditional intensity function which is a 

strictly positive function that gives a history-dependent 

generalization of the rate function of a Poisson process. We 

use the conditional intensity function to characterize the 

spike train as a point process [6]. We assume that on an 

interval      , J spikes are fired by the single neuron at 

times             for          the conditional intensity 

function is defined as: 
 

                  
    

 
                            

  
 

 

        

 

where                is a conditional probability, The       

is the number of spikes fired by the neuron in 
           includes the neuron’s spiking history up to time t, 
and       is interested parameter to be estimated [6]. 

Because the conditional intensity function completely 

defines the point process, to model the neural spike train in 

terms of a point process, it suffices to define its conditional 

intensity function. The parametric models are used to 

express the conditional intensity as a function of covariates 

of interest [5], [7]. The conditional intensity function enables 

us to write the counting process       as an observation 

equation for the state space approach,  
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where      is a zero mean error process that is the residual 

between a point process and its expectation [6]. 

In order to represent the point process model, we 

discretize the time interval       by dividing it into   

intervals of width          , such that there is at most one 

spike per interval. For       , let    be the indicator of 

a spike in the interval            , which is one if there 

is a spike and zero otherwise. We let                  
denote the spiking activity and                        be the 

values of     in      . It follows from the theory of point 

processes, that by taking the discrete approximation of the 

joint probability density of the spike train on the 

interval           , the probability mass function of the 

observation equation for our state-space model is defined as 

[6]:  

                                             
 

To apply the extended Kalman filter, we construct a discrete 

time version of the observation Equation (2) for a fine 

partition of the observation interval, linearize its expected 

value as a function of the state process by using the linear 

terms of a Taylor expansion about the one-step prediction 

mean, and add Gaussian white noise errors. The resulting 

approximate observation equation is: 

                      
  

  
         

               

The Gaussian error term     should be selected so as to have 

similar statistical properties of the observation distribution. 

The variance of the discrete time approximation to the point 

process model is    , which is unknown. Since   is 

sufficiently fine the             might be a good choice. 

The state equation is the Gaussian linear stochastic 

dynamical system as follow, where   is a zero-mean 

Gaussian noise with covariance matrix   .  

                                                   

 

B. Extended Kalman Filtering of Point Process 

We model the conditional intensity function in terms of 

the state process as 

                        

 

   

                                     

which is a kind of generalized linear models where the 

       are a set of functions that model the stimulus 

specific effect on spiking activity. The        is 1 in the 

interval             and 0 elsewhere. Under this 

parametric model, the spiking activity on different trials is 

independent and effect of history is included in state process. 

Consequently, the time varying rate function based on the 

averaging of the trials in specific time bins is a special case 

of our model. 

We apply the Kalman filtering method for parameter 

estimation. It follows from the theory of point processes, that 

by taking the discrete approximation of the joint probability 

density of the spike train on the specific interval     
1∆, ∆), the probability mass function of the observation 

equation for our state-space model is defined as: 
 

                                              
 

A standard approach for formulating state-space estimation 

algorithms uses the Bayes’ rule and Chapman–Kolmogorov 

equations. For the model defined in Equation (4) and (5).The 

a priori pdf is obtained from Equation (8) and the a 

posteriori pdf is obtained from Equations (9). 

                                           
 

      

           
                             

                          

          

Equations (8) and (9) are a recursive system for computing 

the posterior density          . The first term in the 

numerator of Equation (9) is the probability mass function of 

the observation process in Equation (3), the second term is 

the one-step prediction density defined in Equation (8) and 

the denominator is a normalizing constant that ensures that 

the posterior probability density integrates to one. The 

challenge of this problem is to evaluate Equation (8) and (9) 

for the observation and system models in Equations              

(4) and (5). 

Let        and       define the mean vector and 

covariance matrix of the Gaussian approximation in 

Equation (8), and      and      be the mean vector and 

covariance matrix of the Gaussian approximation in 

Equation (9). The state transition model in Equation (5) is 

sufficient to compute the one step prediction probability 

densities, 
 

                                                    
 

We write the posterior probability in the interval               

            by applying a Gaussian approximation. 

 
                                   

      
 

 
           

 
        

  
             

        
 

 
         

 
      

  
                                  

 

The maximum a posterior estimate of the state is defined by 

the                

   
 
     

   
   and this relation should be 

approximately true for any value of     
   . We can 

therefore choose any specific point to evaluate this 

expression. Evaluating at   
           and rearranging 

the Equation gives, 

                
       

   

 
      

                   

 

Since                     
    , we have 

 
 

                                                            
 

and also we know that,                 
    . Based 

on Equation (12) we can derive the recursive equation for 

     respectively. In kalman filtering framework the 

updated a posterior covariance is 
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Which can be estimated based on Equation (14) the final relation as 

follows: 

 

     

 
 
 
 

  
 
      

   
 

 

      
      

   
       

 

 
      

   
 

 

      
      

   
       

 

  
 
 
 
 

 

      

 

     

 

Rearranging the above equation, it reduces to 

 

 

                 
  

   
      

   
 

 

      
      

   
 

 

 
      

      

 

Thus far, the Kalman filter is completely derived for point 

process observation. 

The histogram representation of recorded data across the 

repeated trials is standard analysis in neuronal data. Under 

the state space model with kalman filtering estimation 

algorithm, we can compute the probability density of a 

histogram constructed with desired bin width. For a spike 

train in time interval       given two times           

 The smoothed histogram based on conditional intensity 

function definition is  

                
  

  

                               

 

and hence, the smoothed rate function estimation is 

 

                  
  

  

                  

        

      

 

The confidence intervals for the smoothed estimate of the 

rate function can be efficiently computed by Monte Carlo 

methods. 

C. Goodness-of-fit Tests 

We use the time-rescaling theorem to construct a 

goodness-of-fit test for a neural spike data model. Given a 

point process with conditional intensity function 

                and occurrence times             where   

     , if we define                  
  

    
, then these    

are independent, exponential random variables with rate 

parameter one [10]. A common approach to measuring 

agreement between the model and the data is to construct a 

Kolmogorov-Smirnov (KS) plot. The KS plot is a plot of the 

empirical cumulative distribution function (CDF) of the 

rescaled times against an exponential CDF. If the conditional 

intensity model accurately describes the observed spiking 

data, then the empirical and model CDFs should roughly 

coincide, and the KS plot should follow a 45° line. If the 

conditional intensity model fails to account for some aspect 

of the spiking behaviour, then that lack of fit will be 

reflected in the KS plot as a significant deviation from the 

45° line. Confidence bounds for the degree of agreement 

between a model and the data may be constructed using the 

distribution of the Kolmogorov–Smirnov statistic [8]. 

III. RESULTS 

In order to illustrate some of the properties of the 

likelihood space, the neural data of spiking activity from the 

inferior temporal cortex neurons of a macaque monkey is 

used. Each stimulus is presented for 250-ms and followed by 

250-ms inter-stimulus blank interval. A 100-ms interval 

before stimulus presentation is recorded for the purpose of 

baseline activity study. Category selective neurons are 

entered in this study and the face selectivity is the most 

important feature for the neuron selection. A sample of 

stimuli presented to the monkey while performing a passive 

fixation task, the raster plot of the spiking activity of a face 

neuron, and projection of the spike train onto the likelihood 

space are shown in Figure 1. 

The conventional method for computing the time varying 

rate function is the procedure called peristimulus time 

histogram (PSTH). In order to find the PSTH, we align the 

spike sequence with the onset of stimulus that repeated 

several times, then, divide the observation period into small 

bins size and then, count the number of spikes from all 

sequences that fall in the bin, and finally, we draw a bar-

graph histogram with the bar-height of count normalized to 

the time bin and number of repetition in units of spikes per 

second. The result of PSTH calculation is shown in Figure 1.  

 

 
Figure 1.  Sample responses of a neuron from inferior temporal cortex of a 

macaque monkey while the animal is doing the passive fixation task. The 

raster plot and the peristimulus time histogram as an estimation of time 
varying  rate  function are shown for a human face. 

 

We use the same spike trains to estimate time varying rate 

function based on peristimulus time histogram with 

assessment of model accuracy assessment. The estimated 

functions with goodness- of -fit measure are shown in Figure 

2.A. We generalize the filtering approach by combining the 

extended Kalman filter with point process modeling. We 

apply the new hybrid filtering approach on the same neural 

data. The results of time varying rate function with no 

assumption on the model parameters with goodness- of -fit 

measure are shown in Figure 2.B. We calculate the effective 

area between KS plot and the 45° line in order to have 



  

quantitative criteria for comparing the goodness- of -fit as 

illustrated in Figure 2. 

 

 
(A) 

 
(B) 

Figure 2. (A) Estimation of time varying rate function based on 

peristimulus histogram approach with goodness- of -fit measure. (B) The 

results of time varying rate function estimation by applying the extended 

Kalman filtering approach with goodness- of -fit measure. The effective 

area between KS plot and the 45° line is calculate for having a quantitative 

criterion for goodness- of -fit comparison. 

 

IV. DISCUSSION AND CONCLUSION 

The development of kalman methods to construct filter 

algorithms for broad classes of observation and state models 

is an active area of signal processing research. To extend 

these methods to the analysis of stochastic dynamical 

systems observed through point processes, we use the 

combination of  Kalman filtering and point process 

modeling  algorithms. We derive the iterative Kalman 

filtering Equations for the point process observation and use 

them for updating the states at the measurement time.  

This might be an efficient way for filtering of the real data 

from the biological systems such as neurons, typically 

involving elements of non-Gaussianity, high dimensionality 

and nonlinearity. To illustrate the properties of the derived 

filtering algorithm, we try to estimate the states of the 

neuron as a dynamic nonlinear system. The spike train is our 

observation from the neural system and state transition is the 

first order random walk model. We define the effect of input 

stimulus on spiking activity as states of system and try to 

optimal estimate. 

Our finding shows that the extended Kalman filtering 

method may be used to construct filtering algorithm for state 

estimation using point process models of neural systems. 

Furthermore, it shows that using the combination of Kalman 

filter with particle filter can give more accurate estimation 

algorithm. The importance of these finding is the estimation 

of the neural response to the different covariate such as input 

stimulus which is essential in neuroscience based studies. 

This method could be extended to the population of neurons 

by estimating the conditional intensity model for the 

populations of neurons that might be useful for investigating 

the neural mechanism of stimulus encoding in nervous 

system in the population level.  

While this study establishes the feasibility of constructing 

likelihood space for the neuronal populations as a linear 

stochastic dynamical system with point process observation 

models, an important extensions for the current framework  

is a possibility to extend the current algorithm to the 

nonlinear state space model for computing smoothed state 

estimate [9], [10]. 
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