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ABSTRACT  
 

This paper presents a new algorithm for Gleason grading of pathological images of prostate. Structural features of the 
glands are extracted and used in a tree-structured (TS) algorithm to classify the images into five Gleason grades of 1 to 5. 
In this algorithm the image is first segmented to locate the glandular regions using texture features and a K-means 
clustering algorithm. The glands are then labeled from the glandular regions. In each stage of the proposed TS algorithm, 
shape and intensity-based features of the glands are extracted and used in a linear classifier to classify the image into two 
groups. Despite some proposed methods in the literature which use only texture features, this technique uses the features 
like roundness and shape distribution, which are related to the structure of the glands in each grade and are independent 
of the magnification. The proposed method is therefore robust to illumination and magnification variations. To evaluate 
the performance of the proposed method, we use two datasets. Data set 1 contains 91 images with similar magnifications 
and illuminations. Data set 2 contains 199 images with different magnifications and illuminations. Using leave-one-out 
technique, we achieve 95% and 85% accuracy for dataset 1 and 2, respectively. 
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1.    INTRODUCTION 
 

Cancer is the second common cause of death after cardiovascular diseases [1]. Prostate cancer is the most prevalent 
cancer diagnosed among men over the age of 50 with 25% of patients’ death from the disease [2]. Early detection of 
cancer is very important for survivable treatment planning of prostate cancer. However, 33% of patients have advanced 
diseases on initial diagnosis [3]. In prostate cancer prognosis, patient is first examined using clinical tests such as 
measuring prostate specific antigen, digital rectum examination, CT, MRI, or trans-rectal ultrasound scan [4]-[7]. If a 
cancer is then suspected, biopsy specimens of prostate tissue are taken, stained and observed by pathologists for any 
evidence of cancer. In the case of cancer, pathologists use a grading system to determine the level malignancy of cancer 
by assigning each cancerous tissue a grade describing the aggressiveness of the disease. 
 
The most common grading system currently used by pathologists is Gleason grading system (GGS) [8]. In this system, 
each cancerous tissue is assigned one of five grades 1 to 5 with higher grades indicating higher malignancy. In this 
system, the architecture of the glands determines the malignancy of cancer. In low grades where cancer is not advanced 
yet, the glands are differentiated, approximately of the same size and equally spaced. In high grades where cancer is 
advanced, the glands are erupted and merged. Thus, they are not as well differentiated as in low grades. 
 
Histological grading of the PIP is very important for treatment planning of prostate cancer. It is also very subjective due 
to inter- and intra-observer differences among the pathologists. Furthermore, it is a time-consuming and in some cases a 
difficult process. Hence, automatic grading of PIP is of interest.  
 
So far, many attempts have been directed towards analysis of microscopic images for cancer [9]-[14]. An artificial neural 
network ensemble-based system is proposed in [9] for automatic identification of lung cancer cells from the biopsy 
images. The proposed system is a two-level ensemble architecture such that the first level is used to judge whether a cell 
is normal or cancerous and the second is used to deal with the cells that are judged as cancerous cells. Automatic method 



for grading of the urinary bladder tumors is also presented in [10]. In this paper, 36 morphological and textural features 
describing cell nuclei are used as the inputs of an artificial neural network. The system assigns each tumor one of three 
grades. An automatic system for the analysis of cells’ nucleus in the biopsy cancerous mammary tissues is presented in 
[11]. In this article, biopsy images are enhanced and segmented using morphological transformations. Ultimate erosion is 
then used to separate cells’ nucleus in contact. 
 
To the best of our knowledge, few attempts have been made towards analysis of the prostate biopsy images. Stotzka et al. 
[12] proposed a method to distinguish between the moderately and poorly differentiated samples, but did not consider the 
benign cases. Their work is based on extracting textural features that describe the arrangement of nuclei in the image. The 
nuclear roundness factor analysis (NRF) is proposed in [13] to predict the behavior of the low-grade samples. Since this 
technique requires manual nuclear contour tracing, it is time-consuming and tedious. Furthermore, the NRF analysis 
cannot be applied to high-grade samples because the monotonic relationship between NRF and grade is lost in high 
grades. In [14], the energy and entropy features of the multi-wavelet coefficients of the images are computed. The most 
discriminative features are then selected using a simulated annealing algorithm. Using a k-nearest neighbor (k-NN) 
classifier the samples are graded. In this work, it is assumed that the images have similar illuminations and magnifications. 

 
In our proposed approach, a Tree-Structure (TS) algorithm is used for Gleason grading of PIP. First, a texture-based 
method is used to segment the glandular regions of the image. The segmented regions and the texture features are then 
given as inputs to the TS algorithm. This algorithm contains five branches. In each branch of the proposed tree-structured 
(TS) algorithm, shape and intensity-based features of the glands are extracted and used in a linear classifier to classify the 
image into two groups. Despite some proposed methods in the literature which use only texture features, this technique 
uses the features like roundness, shape distribution, etc., which are related to the structure of the glands in each grade and 
are independent of the magnification. The proposed method is thus robust to illumination and magnification variations. 
To compare with other techniques, the specimens are also categorized using the texture features proposed in [14]. 
Experimental results show the efficiency of the proposed method. 
 
The rest of the paper is organized as follows. In Section 2, we briefly discuss Gleason grading system. In Section 3, 
extraction of texture features and segmentation of glandular regions are presented. Five different stages of the TS 
algorithm are explained in Section 4. Experimental results are presented in Section 5. We conclude in Sections 6. 
 
 

2.    GLEASON GRADING SYSTEM 
 

Gleason grading is based on the structure of the glands. Fig. 1(a) illustrates the structure of a normal prostate gland. As 
shown, each gland consists of three main parts: lumina, stroma, and nucleus. Nuclei are the dark areas with low 
homogeneity and high variance, while stroma and lumina are the brighter regions with high homogeneity and low 
variance. In a normal gland, lumina is located at the center and usually has an irregular shape. Also, it is the brightest 
region in the gland. Stroma, surrounds lumina with nuclei floating in it. In a normal gland, these regions are arranged in a 
way that the gland is a round mass. 

                                                 
                                                            (a)                                                                                   (b) 

Figure 1: (a) Structure of a normal prostate gland. Each gland consists of three main parts: lumina, stroma and 
nucleus. Nuclei are the dark areas with low homogeneity and high variance while stroma and lumina are the bright 
regions with high homogeneity and low variance. (b) Conceptual diagram of the Gleason grading system. In this 
system the cancerous specimens are assigned one of five grades from 1 to 5 based on the aggressiveness of cancer. 
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A normal prostate tissue consists of a large number of glands of approximately the same size and equally spaced.  When   
cancer   infects   the   prostate tissue, it affects the structure of the glands and the distances between them. In Fig. 1(b), a 
conceptual diagram of the Gleason grading system is presented. As shown, the architecture of the glands determines the 
grade. In grade 1 and 2, the glands are well differentiated. In grade 1, they are approximately of the same size and equally 
spaced. But, in grade 2 they have difference sizes. Also, the distances between them are slightly increased. In grade 3, the 
glands are moderately differentiated. Here, the distances between the glands are too high. In grade 4, and 5, the glands are 
erupted and merged, and they are not differentiated. In grade 4, nuclei are still connected to each other, but in grade 5 they 
are separated and floating in the stroma irregularly. In Fig. 2, examples of the five grades of the GGS are presented. 

 
 

               
                                    (a)                              (b)                               (c)                               (d)                              (e)   

Figure 2: Example of the five grades of the Gleason grading system. (a-e). Gleason grades 1 to 5, respectively. 
 
 
Urologists apply suitable treatments for prostate cancer based on the malignancy of cancer. In low-grade (benign) 
specimens which cancer is still restricted in the prostate tissue, urologists often remove the prostate by surgical operation 
(Radical Prostatectomy) [15]. In high-grade (malignant) samples, cancer may metastasize in other organs. In these cases, 
surgical operation is not sufficient. Therefore, urologists apply other therapies like hormone therapy, radiotherapy and 
chemotherapy to control the disease [15], [16].  

 
 

3.    SEGMENTATION OF THE GLANDULAR REGIONS 
 

To evaluate the architecture of the glands, we need to separate them from the image. To this end, color image of the 
biopsy sample I is first converted to gray scale image Igs. This is because color may vary based on the staining agent and 
does not play an important role in locating the glandular regions. A variance filter is then applied to Igs to enhance the 
nuclei. The output is called Iv (see Fig. 3.c). Wavelet-based texture features are then extracted from Igs and Iv. A K-means 
clustering algorithm is applied to them to segment the image into stroma, lumina, and nuclei. The number of clusters in 
the K-means clustering algorithm is set to 2: one for lumina and stroma, and the other for nuclei. The glandular regions 
are then located from the resulting segmented images. Details of the above steps are explained in the following 
subsections. 

 
 

3.1. Variance filter 

In practice, biopsy samples are stained by solvents with different illuminations and colors. Differences between the 
solvents may affect the image color and the segmentation process of the color images. To avoid this problem, we first 
convert the color image I into gray scale image Igs [17], and then apply a variance filter to it to get image Iv. This filter 
assigns each pixel, the variance of its neighbor intensities. Since the regions containing nuclei have higher variance than 
the regions containing stroma and lumina, the application of the variance filter to the gray scale image makes these 
regions brighter than the other regions. Fig. 3 shows an example of the above process. 
 
 
 
 



                                                               
                                                          (a)                                            (b)                                            (c) 

Figure 3: Application of a variance filter to a prostate biopsy image. (a) Original cancerous image of grade 4, (b) 
Gray scale version (Igs) of (a),  (c) Resulting image (Iv) after the application of the variance filter to (b). Note that 
the variance filter enhances the intensity of the nuclei. 

 
3.2. Wavelet transform 

 

Wavelet transform (WT) is the decomposition of signal with a family of orthogonal bases obtained through translation 
and dilation of a kernel function ψ(t) known as the mother wavelet. The mother wavelet is constructed form a scaling 
function φ(t) which satisfies the following difference equation [18].  
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The mother wavelet ψ(t) is related to the scaling function via: 
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In the above equations, h(k) and g(k) are low-pass and high-pass filters, respectively [18]. Applying WT to the image I in 
the first level of decomposition creates four images with the half length of the original image (ILL, ILH, IHL, IHH). We 
employ the WT to create texture features as explained in the next section. 
  
3.3. Texture features 
The three regions of PIP explained in Section 2 can be distinguished by texture patterns. Stroma and lumina are 
structural textures with high illuminations while nuclei are statistical patterns with high variance. In this section, we 
briefly explain how the roughness information of the image is employed to characterize these areas. We used our 
proposed texture features [19] for segmenting the glands in the image. The roughness information of the image is 
extracted using:  
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The first derivative of function f in direction θ is computed as [20]: 
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where yx ff ′′ , are the first derivatives of f with respect to x, and y, respectively. The features are calculated in the 
following steps [19]. 
• Calculate one level of WT of the image to get ILL, ILH, IHL, and IHH. 
• Convolve θf ′  with each of the four components (ILL, ILH, IHL, IHH ) in a number of directions. For each pixel of these 

components, consider a symmetric neighborhood and convolve θf ′  with this window. In this paper, the window size 
is 5x5. 
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where (k,l) and ),((.), lkI neigh  represent the pixel (k,l) and its symmetric neighborhood in each component. In the 
above, w refers to the wavelet space. 

• Compute power of ),((.),, lkF wθ  as: 
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where 〉⋅〈 )(f  denotes the average of function f(.). 
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where θN  is the number of directions. Note that LLwF ,
)
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 are matrices with the half-length of 
the original image. 

• Apply the inverse WT to each of the above components assuming the other components are zero ( LLF
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 is a matrix with the same size as the original image. 

• Apply the following operators to obtain the feature set {F1,F2,F3,F4}: 

HH
HHHLLH

LL

HHHLLHLL

HHHLLHLLLL

FF
FFF

F
F

FFFFF

FFFFFFF

)
)))

)

))))

)))))

=
++

=

+++=

⋅⋅⋅==

54

3

4
21

,

,

                               (8) 

We proposed feature F1 for highly structural textures (in these textures, high frequency components are less important), 
features F2, F3, and F4 for fairly structural or statistical textures, and feature F5 for highly statistical textures (in these 
textures, high frequency components are very important) [19]. Features F1, F2, F3, F4 and F5 are extracted in three scales s 
= 1, 2, 3 in Equation (3). Thus, a feature set containing 15 elements is obtained for each pixel. 
 
3.4. K-means clustering 

For segmenting glandular regions in the image, we employ the K-means clustering algorithm [21] as follows.   
• Calculate the first level of wavelet decomposition of the images Igs and Iv. 
• Apply the feature extraction method explained in Section 3.3 to the resulting images. Since stroma and lumina do 

not have considerable high frequency components, we omit the features F2, F3, F4, and F5 from its feature set. 
Therefore, a feature set containing 3 elements is obtained for stroma and lumina. 

• Apply the K-means clustering to the resulting feature set of the image Igs to segment stroma and lumina. Assume the 
feature space has two clusters: one for regions containing stroma and lumina and the rest of the image (nuclei).  

• Apply the K-means clustering to the resulting feature set of the image Iv to segment nuclei with the same 
assumptions. 

• Obtain the glandular regions by excluding the regions containing nuclei from the regions containing stroma and 
lumina.  

In Fig. 4, an example of the glandular regions segmentation is shown. 

 

      
                       (a)                            (b)                             (c)                             (d)                            (e)                             (f) 

Figure 4: Segmenting the glandular regions in a prostate biopsy image using the method explained in Section 3. 
Regions containing stroma and lumina, and areas containing nuclei are segmented separately. The glandular regions 
are then obtained by removing the nuclei regions from the stroma and lumina regions. (a) A benign sample, (b) 
Resulting image after applying variance filter to gray scale of (a), (c) Segmented image representing areas containing 
stroma and lumina, (d) Segmented image representing areas containing nuclei, (e) Glandular regions obtained by 
finding bright pixels of (c) that are not bright in (d), (f) Overlaying the boundaries of (e) on (a). 
 

 
 



4.    TREE-STRUCTURED CLASSIFICATION 
Segmented glandular regions along with the texture features described in Section 3.3 are given as inputs to a TS 
classification system which grades the PIP in five stages. The output of this algorithm is a grade between one and five. 
Fig. 5 shows a block diagram of the proposed method. In this section, we describe the different stages of the TS 
classification system. 
 
4.1. Labeling glandular regions 
To extract the glandular features, we need to label the segmented glands. To this end, we consider the connectivity of 
each pixel in the segmented image showing the glandular regions. We put all connected pixels into a category and assign 
each category a label (color or intensity). Fig. 6 shows an example of the labeled images. Glandular features of the 
labeled regions are extracted using the methods proposed in the remainder of this section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A block diagram of the five stages of TS algorithm. 
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                                                         (a)                                            (b)                                            (c)   

Figure 6: Labeling segmented regions. (a) A sample of grade 4, (b) Labeled glandular regions, (c) Overlaying the 
boundaries of (b) on (a). Connectivity of the bright pixels in the segmentation map is used to label the regions. 

 
4.2. Tree-Structured classification system 
In each stage of the TS algorithm a number of features are extracted. The jth feature in stage i is shown as CFij. The 
features in each stage are then combined to create a single feature CIi called cancer index. A linear classifier is then used 
to classify the images into two groups. 
 
4.2.1. First stage 
In the first stage of the TS algorithm, images of grades 1 and 2 (group C1) are separated from the images of grades 3, 4, 
and 5 (group C2). To this end, variance and roundness of the glandular regions are computed as desirable features.  
  
4.2.1.1. Variance of glandular regions 
The glands in low-grade (grades 1 and 2) specimens of PIP are approximately of the same size, while in high-grade 
samples (grades 3, 4, and) they are merged and have different sizes. Furthermore, in low-grade cases the glands are 
morphologically similar and approximately have the same illumination. In the high-grade cases, not only the glands are 
dissimilar but also they have different illuminations. We consider this in the definition of the first feature. Assume Li is 
the label of all pixels in the ith gland. SB(i), size of the mentioned gland considering the illumination is obtained by: 

∑
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where δ is a discrete delta function, N is the number of pixels in the image, k represents the kth pixel, Igs(k) is the 
intensity of the kth pixel in the gray scale image, L(k) is the label of kth pixel, and M is the number of the glands in the 
segmentation map. The first feature, CF11, is defined by: 
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The higher CF11, the higher grade of the specimen. 

 

4.2.1.2 Roundness factor 
The glands in low-grade specimens are approximately round, while in high-grade cases they are erupted and have 
irregular patterns. Hence, we consider the roundness of the glands as the second feature in the first stage. Assuming S(i) 
is the area of the ith gland, r(i) is the radius of a circle with the area of S(i), and SR(i) is the perimeter of the ith gland, the 
roundness factor (Rn) of a gland is computed via:  
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For a circle, Rn is 1. The higher the roundness of a gland, the closer Rn to 1. To include both of the roundness and size 
features, we calculate the following parameter for each gland. 
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The closer Rn to 1, the closer SRn to S. To include all glands, we compute the following. 
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Ultimately, we define the second feature of the first stage as: 
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In low-grade specimens with the round glands, CF12 is small. In high-grade cases where the glands have irregular 
patterns CF12 is large. We normalize features CF11 and CF12 to [0,1] [21]. Then, we combine them to compute the 
following index, which is proportional to the grade of the specimen: 
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where CI1 is the cancer index in the first stage of TS algorithm. In low-grade cases where the glands are round and of 
approximately the same size, CI1 is low. In high-grade cases, where the glands have irregular patterns and are of different 
sizes, CI1 is high. Thus, we apply a linear classifier to CI1 to classify the images in the first stage.  
 
4.2.2. Second stage 
In the second stage of the TS algorithm, images of grades 1 and 2 are separated from C1. Here, we use distribution of the 
energy in the texture feature space and variance of energy of the segmented regions as effective features. 
 
4.2.2.1 Distribution of energy in the texture feature space 
In images of grade 1, the glands are arranged uniformly. But in grade 2, the distances between the glands increase such 
that their energy distribution changes noticeably. Therefore, we compute energy distribution of the glands as effective 
feature. Since the glands are better shown in Igs, we use its feature space to compute this feature.  

 

 

 

 

 

 

Figure 7: Representation of division of an image into equal parts for calculation of energy distribution of the glands. 
 

• In the ith stage, the image is divided into i2 equal regions (Fig. 7). Energy of each region in the texture feature 
space is then computed separately: 
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where Ei(n) and Ni are the energy and number of pixels in the nth regions of ith stage, respectively. F1s=k is also the 
kth texture feature computed for Igs 
 

• In the ith stage, we define Ai as an i2-element matrix such that its elements are Ei(n)s.  
• In the ith stage, we compute hi proportional to the homogeneity of Ai as (17). Here, H denotes the homogeneity.  
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• Finally, CF21 which describes the energy distribution of the glands, is computed as follows: 
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In the above, Q is the number of all stages. In image of grade 1 where the glands are arranged uniformly, CF21 is small. 
But in images of grade 2 where the distribution of the glands changes considerably, CF21 is large. 
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4.2.2.2 Variance of energy of the segmented glandular regions 
In images of grade 1, the glands have very similar structure. But in images of grade 2, the glands do not have similar 
structure as in grade 1. To verify this point, we study the variance of energy of the segmented glandular regions in the 
image. Energy of ith gland in the texture feature space is computed as: 
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In this equation, N is the number of pixels in the image and Fk denotes the kth feature of the texture feature space. 
Ultimately, variance of energy of the glands in the texture features is computed as follows: 

222 )]([mean

)(variance

g

g

E

E
CF =             (20) 

Like the previous section, we normalize CF21 and CF22 to [0, 1]. Then, we combine them as: 

22212 CFCFCI ⋅=          (21) 

and apply linear classifier. In image of grade 1 where the glands are arranged uniformly and are similar, CI2 is small. But, 
in grade 2 where the glands are not arranged as uniformly as grade 2 and are dissimilar, CI2 is large.  

4.2.3 Third stage 
In the third stage of the TS algorithm, images of grade 3, 4, and 5 (group C2) are classified into two groups: groups of 
grade 3 (C21) and grade 5 (C22). In this step, some of grade 4 images are classified to C21 and the rest to C22. In grade 
3, we still see some glands in the image with nuclei connected to each other. In grade 5, on the other hand, we see no 
glands in the image and nuclei are distinct from each other. We use these facts to classify the grades 3, 4, and 5 into two 
mentioned groups. Here, we use a feature describing the entropy of lumina, stroma, and nuclei to classify the images. In 
this stage, we use the feature space of Igs as follows: 
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where N is the number of pixels in the image and F1k and F2k are the kth feature explained in section 3.3 and correspond 
to Igs and Iv, respectively. In this stage also, we apply the linear classifier to the computed feature to categorize the 
samples. 

4.2.4 Fourth stage 
In grade 3, we still see round glands, but in grade 4, the glands are erupted and have irregular patterns. We use this 
property to separate grades 3 and 4 from C21 in the fourth stage of TS algorithm. To this end, we compute ratio of 
energies of round segmented regions to irregular ones. We combine this feature with those describing entropy of lumina, 
stroma, and nuclei, respectively. 

4.2.4.1 Ratio of energies of round regions to irregular regions 
In the first stage of the TS algorithm, we computed a feature (CF12) which describes the roundness of the glandular 
regions. While training the system, a threshold (Tr) is obtained for this term. Here, we use this threshold to determine if a 
gland has round or irregular shape. Hence, ration of round regions to irregular regions is obtained as follows: 
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4.2.4.2 Entropy features 
When cancer advances in the prostate tissue, it increases the level of entropy of the image. Here, we compute features 
describing the entropy of lumina and stroma (CF42), and nuclei (CF43), respectively. To this end, we use the feature sets 
of Igs and Iv. These values are obtained as follows: 
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Like the previous sections, we normalize these three features to [0, 1]. Then we combine them as follows to generate CI4. 

 4342414 CFCFCFCI ++=         (26) 
We finally apply the linear classifier to the resulting index. In grade 3 that the cancerous samples have lower entropy and 
there are still round glands, CI4 is small, but in grade 4 image CI4 is large.  

4.2.5 Fifth stage 
In grade 4, the glands are not merged completely and have different levels of energies. We use these points to separate 
grades 4 and 5 from C22 in the fifth stage of TS algorithm. Here, we use variance of energy of the segmented regions 
and features describing entropy of lumina, stroma, and nuclei. Since we compute similar features in the previous sections, 
here we use some of them as: 

 .435342522251 ,, CFCFCFCFCFCF ==−=                 (27) 

 5352515 CFCFCFCI ++=                  (28) 

We apply the linear classifier to CI5 to categorize the specimens. 

 

5.    EXPERIMENTAL RESULTS 
 

To evaluate the performance of the proposed technique, we use two datasets. The first dataset contains 91 images with 
grades 1, 2, 3, 4, and 5. The numbers of samples in these grades are 4, 15, 20, 25, and 27 respectively. These images 
have similar magnifications and illuminations. They are captured with magnification of × 100. The second dataset 
contains 199 images with Gleason grades 1, 2, 3, 4, and 5. The numbers of samples in these grades are 11, 28, 44, 49, 
and 67, respectively. These images are captured with different magnifications and illuminations.  
 
The leave-one-out technique is used to evaluate the performance of the proposed system in each stage as well as in 
overall. To train the system, thresholds are calculated for each classifier in all stages. The thresholds are obtained by 
minimizing the classification error in each stage.  Since the numbers of samples in different grades of both datasets are 
not the same, we trained the classifier such that a balance occurs between the considered samples (as an example, there 
are 11 and 28 samples in grades 1 and 2 of the second dataset, respectively. In the second stage that these grades are 
classified, the threshold is derived when the optimum classification errors are obtained for both grades). We computed 
texture features obtained by Haar, Daubechies (Db) 3, Db 6, Symlet (Sym) 2, Coiflet (Coif) 2, Bi-orthogonal (Bior) 1.1, 
Bi-orthogonal 3.3, Reverse Bi-orthogonal (Rbio) 1.1, and Reverse Bi-orthogonal 3.3, respectively and employed them in 
TS algorithm. Table 1 shows the accuracy percentages of the proposed stages (Stg) and the overall system (OS) using 
these wavelet basis.  

 
To compare the performance of the proposed system with the other works, we classified the images using multi-wavelet 
features that are proposed in [14]. We computed energy and entropy of the multi-wavelet coefficients of the images in 
the first and second levels of decomposition. We extracted these features for repeated row and critically sampled 
preprocessing. We used the multiwavelets GHM, CL, SA4, BiGHM2, and BiH32. To evaluate the error rate of the 
features, we used a k-NN classifier and the simulated annealing as described in [14]. The results are presented in Table 2. 

 
 
 
 
 
 



Table 1: Accuracy percentages of the proposed stages (Stg) and the overall system (OS) using different wavelets. 

First dataset Second dataset Wavelet base 
Stg1 Stg2 Stg3 Stg4 Stg5 OS Stg1 Stg2 Stg3 Stg4 Stg5 OS 

Haar 98 100 100 97 96 95 92 97 95 89 91 84 
Daubechies 3 98 100 100 97 96 95 94 97 95 88 88 83 
Daubechies 6 97 100 100 95 96 94 93 97 95 86 92 84 

Symlet 2 97 100 100 93 96 92 91 97 95 86 88 81 
Coiflet 2 97 100 100 97 96 95 93 97 95 89 90 85 

Biorthogonal 1.1 98 100 100 97 96 95 92 97 95 89 91 84 
Biorthogonal 3.3 98 100 100 97 96 95 91 97 95 87 88 82 

Reverse Biorthogonal 1.1 98 100 100 97 96 95 92 97 95 89 90 83 
Reverse Biorthogonal 3.3 98 100 100 95 96 94 92 97 95 88 89 82 

 
 

Table 2: Accuracy percentages of energy and entropy features of multi-wavelet method proposed in [4] for grading of PIP. The results 
are obtained for either repeated row (rr) or critically sampled (cs) preprocessing and in first and second levels of decomposition.  

Dataset First dataset Second dataset  
Level of 

decomposition 1st level 2nd level 1st level 2nd level 

k 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 
GHM 94 91 86 82 79 91 92 86 82 76 68 65 64 62 57 69 66 64 62 59 

CL 94 92 87 84 78 94 90 88 86 79 69 67 64 63 61 71 67 65 63 62 

SA4 95 93 89 86 80 95 93 88 85 78 73 67 65 62 60 71 66 65 64 62 

BiGHM2 95 92 87 85 77 94 91 87 82 77 72 66 64 63 60 69 67 65 63 61 

M
ul

ti 
w

av
el

et
 

(r
r)

 

BiH32 93 90 86 83 78 93 91 87 85 78 69 66 64 64 61 69 65 64 62 61 

GHM 92 91 83 83 78 95 92 90 87 80 67 65 64 62 59 71 65 64 62 60 

CL 94 93 89 85 78 94 92 89 82 77 70 67 65 63 61 69 67 61 63 61 

SA4 94 91 89 85 79 95 92 87 83 76 72 66 63 62 60 71 66 65 64 62 

BiGHM2 90 92 92 85 82 93 95 94 85 80 67 65 63 62 60 69 66 63 63 61 

M
ul

ti 
w

av
el

et
 

(c
s)

  

BiH32 93 94 93 90 84 92 92 93 90 84 71 69 66 63 62 72 69 67 64 62 

 

Our proposed system grades the PIP with accuracies of about 95% and 85% for the datasets 1 and 2 respectively. The 
most important advantage of the proposed method compared with the other techniques is that it is based on the 
physical/biological concepts used by the pathologists. The results of the comparison study suggest that when the images 
are captured in similar conditions, their characteristics do not have considerable differences. However, when the images 
are captured in different conditions, the image characteristics may vary noticeably such that each sample has its own 
characteristics. Thus, classifying the images by searching the most similar samples (k-NN) may lead to undesirable 
results. Table 2 shows that the accuracy decreases as k increases. This may indicate that even when the images are 
captured with similar magnification and illumination, the pathological samples in the same group may not have the same 
energy and entropy features. This is attributed to the subjectivity of the PIP. Thus, for training the system using k-NN 
classifier and energy and entropy features, a relatively large dataset containing various samples may be needed. 

 
6. CONCLUSION 

 

 A TS algorithm is proposed and evaluated in this paper for automatic grading of the pathological images of the prostate. 
Texture features are computed and employed in K-means clustering to segment glandular regions of pathological image 
of the prostate. The segmented glandular regions and the texture feature space are then given as the inputs to the TS 
algorithm for automatically grading the PIP. Performance of the system is evaluated using two datasets containing 91 
and 199 images, respectively. These datasets have images with similar and different magnifications and illuminations, 
respectively. Accuracies of about 95% and 85% have been achieved for the first and second datasets, respectively. 
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