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ABSTRACT 

 

Functional magnetic resonance imaging (fMRI) has been 

shown to be useful in the detection of the brain activity 

via the relatively indirect coupling of neural activity to 

cerebral blood flow. This work aims to treat the parameter 

estimation problem of the linear model for fMRI time 

series which are supposed to be contaminated by 

fractional-integrated processes and white noise. Unlike 

conventional approaches such as t-test which use time 

domain data, a maximum likelihood (ML) method is 

adopted in frequency domain. However maximization of 

the likelihood function in this case is a highly nonlinear 

estimation problem. Since the genetic algorithm (GA) 

tends to find the globally optional without being trapped 

at local maxima, an estimation scheme based on the GA is 

therefore developed to solve the ML parameter estimation 

problem. Finally this method was applied to real fMRI 

data and better activation detection in compare with 

common t-test method was shown. 

 

1. INTRODUCTION 

 

Current tomographic technologies in medical imaging 

enable noninvasive studies of brain function by measuring 

hemodynamic changes related to changes in neuronal 

activity. The signal changes observed in functional 

magnetic resonance imaging (fMRI) are mostly based on 

blood oxygenation level dependent (BOLD) contrast and 

are usually close to the noise level [1], [2]. Consequently, 

statistical methods and signal averaging are frequently 

used to distinguish signals from noise in the data. In most 

fMRI setups, images are acquired during alternating task 

(stimulus) and control (rest) conditions.  

The detection of changes in the BOLD signal is 

further complicated by the presence of a large number of 

instrumental and physiological noises that contaminate 

the fMRI signal Long-term physiological drifts and 

instrumental instability contribute to a systematic increase 

or decrease in the signal with time. While the exact cause 

for the drift of the baseline signal is not completely 

understood [3], this structured trend constitutes a basic 

hurdle to any statistical analysis of the data. This trends 

and physiological noise are the main source of color in 

the fMRI data, so before adopting any statistical method 

like t-test, the noise in observation must be whiten [4]. 

For this purpose the noise model must be known. 

A careful analysis of the spectral characteristics of 

fMRI noise, examined in datasets acquired under resting 

or “null” conditions, has instead suggested that the noise 

may generally have 1/f-like properties with 

disproportionate power at lower frequencies [5]. In this 

paper this model was used for noise to show the effect of 

suitable whitening filter on the detection of activated area. 

So in first we should estimate noise model parameter for 

each voxel time-series separately. We maximize 

likelihood function for parameter estimation and problem 

turn into an optimization problem. There are lots of 

methods that deal with optimization of a function, but 

most of them do not reach a global solution. For this 

reason Genetic Algorithm method was chosen for 

achieving a global solution.    

 This paper organized as follow. In session 2, a linear 

model usually used in analyses is described. In session 3, 

a suitable model for noise is introduced. In session 4, 

Likelihood function was calculated in frequency domain. 

In session 5 a brief description of genetic algorithm was 

presented. Session 6 result was shown.  

 

2. FMRI TIME-SERIES MODEL 

 

If we assume that the hemodynamic system is a linear 

time-invariant system, we can write its output x(t) as:  

 
)(*)()( tsthtx   (1) 

 

,where h(t) is the hemodynamic response function that 

was shown in figure (1) and s(t) is stimulus pattern.  

However fMRI measurements are contaminated by noise. 

If we present y(t) as the observation , we have  

 

)()()( ttxty    (2) 

 

where   is an unknown weight have to be estimated. This 

weight varies from voxel to voxel. It is obvious that if the 

baseline drift is not removed, any analysis based on the 



model (2) will be tracking the large variation in the signal 

instead of the effects of the stimulus. So proper estimation 

of     depend on realizing noise  and baseline 

characteristics. 

In order to obtain a baseline from which one can 

estimate the effect of the stimulus it is thus essential to 

infer and remove the systematic drift, or trend, in the data. 

Predicting the amount, type and magnitude of drift is 

difficult since etiology is multifractal and poorly 

understood.  
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Figure 1. Hemodynamic response function 

 

 

3. NOISE MODEL 

 

Recently, fractal signals, i.e., fractionally differenced 

noise, have attracted much consideration in signal 

processing, image processing geophysical data, network 

traffic, and computer vision due to the wide variety of 

data for which they are inherently well suited. These 

processes provide good models for self-similarity and 

long-range correlation structure observed in several signal 

processes.  

Fractal signals are increasingly important candidates 

for data modeling in a variety of signal processing 

applications. In contrast to the well-known family of 

autoregressive moving average (ARMA) processes, 

fractal signals are characterized by self-similarity and 

long-range correlation structure. 

Discrete time fractal process called discrete 

fractionally differenced Gaussian noise (fdGn) has been 

defined by Granger and Joyeux [6]: 

 

)()1()( 1 nvqnu d  (3) 

 

where 1q  is the delay operator, v(n) is a zero-mean 

Gaussian white noise with variance 2 . The relation 

between the fractional number and the Hurst parameter H 

in long memory process in the discrete-time case is 

5.0 dH . The power spectrum of u(n) can be 

presented as [7]:  
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where 5.00  d . also we have noticed that several 

authors [5] have argued that fMRI signal is also 

contaminated by a white noise in addition to the long 

memory noise. Therefore, in this paper we consider fMRI 

noise power spectrum as: 
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where 2

w  is the variance of white noise w(n). We also 

assumed white noise and fractal noise are statistically 

independent.  

 

 

 

4.  LIKELIHOOD FUNCTION FOR PARAMETER 

ESTIMATION 

 

By observing the spectral density )( fS y
 of the 

observation, it is found that )( fS y
 has a very simple 

structure, and it depends to the parameters d,  , w and 

 . Taking the N-point discrete Fourier transform of (2) 

yields the frequency-domain model 

 

)()()()( kWkUkXkY    (5) 

 

where Y(k), U(k) and W(k) denote the Fourier transform 

coefficients of y(n), u(n) and w(n), respectively. 

In [7]  log-likelihood function for fractal noise 

estimation was calculated. We reform it for linear model 

as follow:  
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where  N is the number of data points in fMRI time series 

and 2

2

22

))/(sin(

2
))(var( wd

d

N
Nk

N
k 




 


. Then the ML 

parameter estimation problem of linear model parameters 

in the frequency domain is to find an optimal vector 
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5. PARAMETER ESTIMATION VIA THE 

GENETIC ALGORITHM 

 

The GA is a stochastic optimization algorithm that was 

originally motivated by the mechanisms of natural 

selection and evolution of genetics. The underlying 

principles of the GA were first proposed by Holland in 

1962 [8], whereas the mathematical framework was 



developed in the late 1960s and was presented in 

Holland’s book [9].  

 

5.1. Search Space 

 

In the following, a parameter estimation algorithm is 

developed based on the GA to estimate the parameter 

vector ),,,(
w

d    of the fdG process in (2) by 

carrying out maximization of the log-likelihood function 

in (7).  

By using the GA to solve the problem of 

maximization of the log-likelihood function  )(
Y

L  in 

(16), the search space of the parameter vector   must be 

specified properly beforehand. This is because an 

appropriate choice of the search space may speed up the 

convergence of the GA.  

For this purpose before any process, we normalize 

each time-series using division by its standard deviation.  

By then the unknown parameters 
w

 ,  will be limited up 

to 1.  Also the absolute value of   is always less than 1. 

 

5.2. Genetic Operators 

 

The most important and basic operations for the GA for 

maximizing (7) are maintaining, reproduction, crossover, 

and mutation. A brief description of these operations is 

presented in the following. 

• Maintaining: This is a process of copying the best string 

in this generation (with the highest fitness) to the next 

generation. The purpose of this operation is to ensure that 

the best string in the next generation is at least no worse 

than the best one in this generation. 

• Reproduction: Reproduction is a process in which 

individual strings are copied and put in a mating pool for 

further genetic operations according to their fitness 

values.  

• Crossover: Crossover provides a mechanism for 

exchanging information in two strings via probabilistic 

decision. Combined with reproduction, it is an effective 

way of exchanging information and combining portions of 

high-quality solutions. 

• Mutation: Mutation is occasional alteration of each bit 

of a chromosome from 0 to 1 or from 1 to 0 with a small 

probability mP . The purpose of mutation is to introduce 

occasional perturbation to the estimated parameters to 

ensure that all points in the search space can ultimately be 

reached. 

 

 

6. EXPERIMENTS 

 

6.1. Simulation 

 

For simulation of a fMRI time-series according to 

described fractal noise model, we need to synthesize fBm 

process. There a lot of methods to produce this noise. In 

this paper, the noise was a synthetic fBm generated with 

the wavelet-based approach described in [10] (see also 

[11]). This new construction reproduces the theoretical 

properties of fBm and makes it possible to control the 

variance of the noise process. Fig. 2 shows a realization 

(with 256 times samples) of the synthetic fBm with H 

=0.7; the magnitude of the Fourier transform of the time–

series, shown in Fig. 2(b), is a straight line in the log-log 

scale. We used for all our experiments. 
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Figure 2. A realization (with 256 times samples) of the 

synthetic fBm with H=0.7. 

 

We simulated 10000 fMRI time series. In this data we 

added activation to 1000 time series with different bold 

contrasts and the remains used for false alarm rate 

accuracy research. Then we used our proposed method 

and t-test for activation detection. The results of t-test and 

Genetic Algorithm are shown below (figure 3).  

 Genetic Algorithm was run in 250 generations for 

each time series. We set the 1.0Pm in all estimation. 

The resulted activation regions are shown in figure 3(b), 

where as the activation regions detected by t-test are 

illustrated in figure 3(c).  These figures show that the 

proposed method detected more activated voxels. In 

figure 4, measured false positive rate versus expected 

false rate is plotted. For purposed algorithm, measured 

false alarm rate is approximately is the same everywhere.  

 

 

 
Figure 3.  a) Spatial pattern of active regions (with different 

Bold Contrasts) in the simulated data, b) Activation area 

detected by proposed method. c) Activation area detected by t-

test method. 
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Figure 4. Measured false positive rate versus expected false rate 

 

 

6.2. Real Data 

For evaluation of our method we used Block-design real 

fMRI data. Functional images were acquired from a 

normal volunteer using a single-shot gradient echo EPI 

sequence (TR=3 sec, TE=50 ms, FOV=250250100 

mm
3
, matrix size=646420) on a 1.5 Tesla Siemens 

Vision MRI scanner. The subject performed a finger to 

thumb opposition task. The task consisted of 4 periods of 

84 seconds, where each period contained 30 seconds of 

left hand finger opposition, 12 seconds of rest, followed 

by 30 seconds of right hand finger opposition, and 

another 12 seconds of rest. A 3D high-resolution 

anatomical image volume was also acquired from the 

subject using an MP-RAGE sequence. This data was 

processed by purposed method and t-test. Results were 

presented  using  AFNI. AFNI runs under Linux operating 

system and was produced by Dr. Cox. 

Both methods detect three active area motor cortex, 

cerebrum and supplementary   motor area (Figure 5).  

Detected activated areas using purposed method are wider 

than using t-test method. These results show that proper 

noise model can help better activation detection.  Figures 

5(a) and 5(d) are coronal profiles. Supplementary   motor 

area   and motor cortex area were shown to be activated.  
 

   

(a) (b) (c) 

   

(d) (e) (f) 

  Figure 5. Activation area in experimental fMRI. The activated 

areas were shown in color. The first row shows activated areas 

achieved by purposed method. The second row shows activated 

areas achieved by t-test statistic. a, d) axial section. Two active 

areas motor cortex and supplementary   motor area was 

detected in this section. b, e) coronal section. Two active 

areas motor cortex and supplementary   motor area was 

detected in this section.  c ,f) ) sagital section. one active area  

cerebrum was detected in this section. 
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