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ABSTRACT 

 

MRSI is an efficient approach to specify chemo-physical 

structures of living organs non-invasively. The need to 

differentiate between normal and abnormal tissues and 

determine type of abnormality before biopsy or surgery 

motivated development and application of MRSI. This 

paper compares wavelet and wavelet packets feature 

spaces in the analysis of MRSI using artificial neural 

networks. The purposed methods were applied to the 

brain spectra of patients with three tumor types 

(Astrocytoma, Oligodendroglioma and Malignant 

Glioma). The results of classifying wavelet packets 

feature space show about 10% improvement compared to 

the wavelet. This shows that wavelet packets features can 

describe the spectra and the effects of lesions on them 

better than the wavelet features. 

 

1. INTRODUCTION 

 

One of the recent and important applications of nuclear 

magnetic resonance technology is Magnetic Resonance 

Spectroscopic Imaging (MRSI) [1]. The major clinical 

applications of MRSI have focused on the examination of 

tissues for the purpose of diagnosis of disease or for the 

monitoring of therapeutic treatments non-invasively [2]. 

The MRSI measured from a tissue provides a wealth of 

information about the biochemicals contained within it 

[2]. Therefore considering the effects of the diseases on 

the tissue biochemicals, applying appropriate processing 

methods to MRSI data could extract useful information 

and improve the diagnosis.  In recent years, a variety of 

investigations and research have been reported on the 

diagnostic applications of these signals [3]. Our final goal 

is to develop novel processing methods to determine the 

type of abnormality automatically. In this paper we 

compare two feature spaces using wavelets and wavelet 

packets extracted from brain MRSI data in differentiating 

between normal tissues and tumors and between three 

different brain tumor types. 

 

2. MRSI BRAIN SPECTRA 

 

As in imaging, there are technical reasons that make the 

brain easier than other organs to examine with MRSI: 

motion artifacts are minor, shimming is relatively easy to 

perform, and there is no detectible lipid in normal brain 

tissue [3]. Mobile lipids may appear as part of pathology 

such as necrosis tumors [4]. Another advantage of MRSI 

in the brain is that it does not require a special coil and 

may be incorporated at the end of a standard brain MRI 

[1].  In addition, due to non-invasive property of this 

method, it could be a good candidate for brain 

diagnostics.  

Figure 1 shows typical MRSI spectra of the normal 

human brain from a clinical 1.5 T MR scanner. This 

spectrum is characterized by three major peaks called 

metabolits: creatine (Cr), choline (Cho), and N-Acetyl 

Asparatine (NAA) [2].  

 

 

 
Figure 1. A real brain MRSI signal and the metabolite peaks 

creatine (Cr), choline (Cho), and N-Acetyl Asparatine (NAA).  

 

Cr is involved in energy production in cell 

mitochondria [3]. Cr has been considered to be stable 

enough to be used as an internal reference in reporting 

relative concentrations of other brain metabolites, but 

recent findings suggest that this assumption should be 

used by care [5]. Cho takes part in membrane and 

neurotransmitter synthesis. Cho is thought of as a product 

of myelin breakdown [3]. NAA is the dominant peak in 

normal adult brain spectra. It is accepted as a neuronal 

and axonal marker whose physiological role is currently 

unknown [6]. Reduced NAA has been observed with 
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many neurological diseases that causes neuronal and 

axonal degenerations [3]. A diseased spectrum is shown 

in Figure 2. 

It is also possible to observe some other peaks in 

brain spectra. For example, mobile lipid signals resulting 

from pathology appear as sharp peaks. They are seen in 

some tumors, stroke and acute MS lesions, and appear to 

be associated with acute destruction of myelin [7].  

 

 
Figure 2. A diseased spectrum and the metabolite peaks 

creatine (Cr), choline (Cho), and N-Acetyl Asparatine (NAA) 

related to a patient with coagulation necrosis. 

 

Interpretation of MRSI spectra consists of 

identification of the various spectral peaks, calculation of 

the relative or absolute metabolite concentrations and 

determination of peak shifts [3]. In many situations, 

qualitative data interpretation may quickly provide the 

needed answers [2]. However it is the ability to assess 

metabolite levels that gives the MRSI a clear advantage 

over other clinical imaging techniques. Accurate and 

reliable quantification, when achieved and routinely 

applied, will have the biggest impact on the clinical utility 

of MRSI. In most clinical situations, some type of 

quantification is essential for assessing metabolite levels 

in patients compared to those in healthy individuals, and 

for monitoring changes in metabolite levels of patients 

undergoing treatment [7]. A major factor in the 

acceptance of in vivo MRSI as a useful clinical tool relies 

on its ability to provide an accurate and reproducible 

means for determining metabolite levels [1].  

Our goal in this research was to detect and segment 

tissue abnormalities by extracting the biochemical 

features related to these peaks in the MRSI data of brains 

with tumors. Each of these metabolites has a specific role 

in the brain tissue and based on available clinical data, 

each brain lesion will have different effects on these 

metabolites [8]. 

 

3. METHODS 

 

Analysis of this signal may be performed in different 

ways, but the goals of any analytic method are the 

following: presentation of MRSI data in an easily 

interpretable format, assignment of measured signals to 

specific metabolites, and robust determination of the 

relative or absolute metabolite concentrations [9].  We 

applied different processing methods in order to extract 

useful feature spaces from the spectrum.  

 

3.1. Wavelet feature space 

 

The first step in any MRSI data evaluation is 

identification of the various spectral peaks and their 

assignments to particular metabolites [3]. Complete peak 

identification requires determination of peak positions 

and characteristics [5]. Peak identification alone may be 

useful in instances where only verification of the presence 

or absence of a given metabolite is needed. For example, 

in the brain spectra an obviously absent NAA peak helps 

confirm suspicion of damage or loss of neurons or axons 

[10].  

We use wavelet transform (Daubechie10) for 

analyzing the local areas related to each peak and 

segregate metabolite peaks by thresholding the wavelet 

coefficients and finally reconstruct a signal from the 

remaining coefficients.  The threshold value depends on 

MR scanner and patient conditions. Our approach 

calculates it automatically using the mean value of the 

wavelet coefficients. This signal contains the peaks 

without minor details that prevent automatic estimation of 

the peaks locations. We estimate the peaks locations from 

this signal. Then, we calculate the peaks features using 

the original signal that contains all the information.  

The use of MRSI for quantitative analysis depends 

on the fact that, if certain conditions are met, the area 

under a peak is directly proportional to the number of 

spins contributing to the peak [3]. Therefore, under 

appropriate conditions in MRSI evaluation, assessment of 

metabolite relative or absolute concentrations can be 

reduced to calculation of peak areas, also referred to as 

peak integrals [3]. In order to have a complete feature 

space we extracted peak height, peak bandwidth, and the 

mean value of wavelet coefficients in the peak region 

rather than peak area. Peak area calculation by itself is not 

sufficient for accurate assessment of concentrations [11]. 

An easy assessment of variations in metabolite levels 

consists of evaluating metabolite peak area ratios [3, 11]. 

Therefore, we calculated the peak area ratios and added 

them to the wavelet feature space. The disadvantage of 

using ratios is that changes in either or both metabolite 

concentrations affect the ratio. 
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Figure 3. A normal brain MRSI signal and the separated 

metabolite peaks creatine (Cr), choline (Cho), and N-Acetyl 

Asparatine (NAA) using  wavelet  transform. 

 

3.2. Wavelet packets feature space 

 

The wavelet packet method is a generalization of wavelet 

decomposition that offers a richer range of possibilities 

for signal analysis [12]. In wavelet analysis, a signal is 

split into an approximation and a detail. The 

approximation is then split into a second-level 

approximation and detail, and the process is repeated 

[13]. In wavelet packet analysis, the details as well as the 

approximations can be split [12]. This offers the richest 

analysis, we applied the wavelet packets transform to the 

whole signal to analyze the signal rather than only the 

metabolite peaks. We applied wavelet packets algorithm 

to our signal for 3 levels (Daubechie10) and extracted the 

statistical parameters such as mean, maximum, and 

variance values of the coefficients of each sub-band. We 

used these statistical parameters as other features 

extracted from the signal. The Daubechie10 mother 

wavelet and level 3 were chosen from reference [12]. In 

this way, we had features expressing the whole signal 

characteristics despite the above method, in which we 

only used the features related to specific regions of the 

signal. 

 

3.3. Artificial Neural Networks Classifiers 

 

Neural network analysis of MRSI data has been 

successfully used for automatic classification of human 

brain tumors even though there were no statistically 

significant metabolite concentration differences between 

the tissue groups [14]. Results to date indicate that neural 

networks may distinguish among spectra whose 

differences are not apparent to the human observer [15]. 

We used multilayer perceptron neural networks to 

classify the features extracted from the spectra. We 

selected the number of neurons in the hidden layer by trial 

and error in 95% learning. The networks were trained to 

classify the spectra into two classes: normal and diseased. 

Additional classification of the different groups of 

patients, as defined from clinical data, was also 

performed. In this case, classification was attempted in 

two steps. In the first step we had three classes: normal, 

necrosis and tumor. The next step was to classify the 

tumor spectrums into three classes: Astrocytoma, 

Oligodendroglioma and Malignant Glioma. Data were 

divided into training, test, and verification groups. The 

first two groups were used for network architecture 

development and the latter was used as an additional 

independent measure of prediction accuracy. We used 

two feature spaces extracted from the spectra using 

wavelet transform and wavelet packets.  

 

3.4. MRSI data 

 

We used clinical and simulated MRSI data to evaluate the 

purposed processing methods and the extracted feature 

spaces.  

The clinical data were the MRSI and biopsy results 

from the brains of patients (mean age = 43, range = 38-

50, 28% female, 72% male) affected by three types of 

tumors (Astrocytoma, Oligodendroglioma, Malignant 

Glioma,) and focal necrosis. The MRSI data were 

acquired using a 1.5 T MRI System (GE Signa). 

To generate the simulated MRSI data, we constructed 

three main peaks for the brain metabolites using Gaussian 

functions. We compiled these peaks with random width, 

amplitude, and location, and with a background signal. To 

create the background signal, we used appropriate number 

of Gaussian functions with appropriate width, location, 

and amplitude. Finally, we added white Gaussian noise to 

the inverse Fourier transform of the spectra and 

reconstructed the results into the simulations. We also 

used the available clinical data and the effect of each 

brain lesion on the spectra to simulate the spectra related 

to each lesion. 

 

4. EXPERIMENTAL RESULTS 

 

As discussed before, we classified the available data in 

three steps. In the first step we trained the network to 

classify the data into two classes: normal and diseased. 
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Figure 4. ANN classification into two classes: normal and 

diseased using the two feature spaces.  

 
The results of this step are shown in the charts of 

Figure 4. In this step, in some cases we had 100 percent 

accuracy in classifying but if we compare the whole 

charts of the two feature spaces we find better results 

from wavelet packets feature space. 

The results of classifying the extracted features into 

three classes (tumor, necrosis, and normal) for both of the 

methods are shown in the charts of Figure 5. We used 

different sets of the features for training and testing of the 

networks to find the best features. In the case of wavelet 

features (which are peak features) we obtained the best 

accuracy when we used peak area ratios, which was 90% 

for the test data. We also used different sets of wavelet 

packets features separately to find the best features in this 

domain. The results show about 7% improvement 

compared to the previous features. This shows that these 

features can describe the spectra and the effects of lesions 

on them better than the previous ones. In other words, this 

shows that each brain lesion has significant effects on the 

whole signal in addition to the metabolite peaks.  
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Figure 5. ANN classification into three classes: normal, 

radiation necrosis and tumor.  

 

In the next step, we used artificial neural networks to 

classify the tumor spectra into 3 types (Glioma, 

Oligodendroglioma, and Astrocytoma).  Due to the 

sample size limitation, we used a leave one out method 

for training and testing of the network. We used the same 

features in the previous methods. The best classification 

results were: 71% for Glioma, 75% for 

Oligodendroglioma and 69% for Astrocytoma. We also 

used the simulated spectra for each brain tumor type for 

training and testing of the network. The best classification 

results in this case were: 82% for Glioma, 85% for 

Oligodendro-glioma, and 83% for Astrocytoma. 
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Figure 6. ANN classification into three classes: malignant 

glioma, astrocytoma and oligodendroglioma. 

 

 

5. DISCUSSION 

 

Although some network architectures could be designed 

to yield 100% correct predictions, it was relatively 

difficult to find a systematic series of parameters that 

yielded consistently acceptable predictive results. It was 

necessary to optimize (reduce) the total number of inputs 

in order to improve the prediction accuracy. For these 

reasons, the following approach, which was more 

consistently successful, was used.  

The average true positive fraction, true negative 

fraction, false positive fraction, and false negative fraction 

for every different set were used [15]. It is one of the 

strengths of this approach that features considered to be 

too different from any used in the training set are not 

necessarily forced to be classified.  

Comparing the average true positive fraction, true 

negative fraction, false positive fraction, and false 

negative fraction for every different set in the wavelet and 

wavelet packets feature spaces shows that the best sets in 

the wavelet feature space are the peak areas and area 

ratios. The accuracies of the networks trained with these 

features were 89% and 90%, respectively. 

The best features in wavelet packets group, as seen in 

Figure 5, were the maximum and mean values of the 

coefficients of each sub-band of wavelet packets in level 

3. The accuracies of the networks trained with these 

features were 95.6% and 95% for the maximum and 

mean, respectively. When we used both of these features 

for training the network, we obtained a higher accuracy at 

97.3%. 

We also applied this procedure to classify the tumors. 

In this case the best results were obtained from the same 

sets as before for both of the feature spaces.  The fact is 

that in this step, as shown in the charts of Figure 6, the 

differences between the classification accuracies were less 

than the previous cases. 

As discussed above, we selected the number of 

neurons in the hidden layer by trial and error in 95% 

learning. The network structures used for the 

classifications in each step are listed in Tables 1, 2. 

 
Table 1.  The feature sets extracted from the spectra using 

wavelet transform and the network structures for the three 

groups of classifying. The first one: classifying into two classes 

(normal and diseased), The second one: classifying into three 

classes (normal, necrosis and tumor), The third one: classifying 

into three classes (glioma, astrocytoma and oligodendroglioma). 

Features 
No. of 

Features 

Network 

Structure 

for the first 

group 

Network 

Structure 

for the 

second 

group 

Network 

Structure 

for the third 

group 

All 15 15-12-2 15-20-3 15-20-3 

Peak areas 3 3-5-2 3-5-3 3-5-3 

Area Ratios 6 6-5-2 6-5-3 6-5-3 

Max values 3 3-7-2 3-7-3 3-7-3 

Peak widths 3 3-7-2 3-7-3 3-7-3 

Peak areas 

+Area Ratios 
9 9-10-2 9-12-3 9-12-3 

Max values 

+Area Ratios 
9 9-10-2 9-12-3 9-12-3 

Peak widths 

+Area Ratios 
9 9-10-2 9-12-3 9-12-3 

 

 
Table 2.  The feature sets extracted from the spectra using 

wavelet packets and the network structures for the three groups 

of classifying. The first one: classifying into two classes (normal 

and diseased), The second one: classifying into three classes 

(normal, necrosis and tumor), The third one: classifying into 

three classes (glioma, astrocytoma and oligodendroglioma). 

Features 
No. of 

Features 

Network 

Structure 

for the 

first group 

Network 

Structure 

for the 

second 

group 

Network 

Structure 

for the 

third 

group 

All 24 24-10-2 24-12-3 24-12-3 

Max 8 8-10-2 8-10-3 8-10-3 

Variance 8 8-10-2 8-10-3 8-10-3 

Mean 8 8-10-2 8-10-3 8-10-3 

Max + 

Mean 
16 16-12-3 16-10-3 16-10-3 

 

 

 

6. CONCLUSION 

 

MRSI is a non-invasive technique that allows direct 

observation of cerebral metabolites, including N-acetyl 

aspartate (NAA), creatine (Cr), and choline (Cho). We 

applied two processing methods using wavelets and 

wavelet packets to the MRSI spectrums to characterize 

brain tumors for clinical diagnosis.  The results of 

classifying wavelet packets features show about 10% 

improvement compared to the wavelet features. This 

shows that these features can describe the spectra and the 

effects of lesions on them better than the previous ones. 

This also suggests that brain lesions affect the entire 

signal in addition to the metabolite peaks. We used 

different sets of the features for training and testing the 

networks to find the best features. In the case of wavelet 

features (which are peak features) we obtained the best 



accuracy when we used peak area ratios, which was 90% 

for the test data. We also used different sets of wavelet 

packets features separately to find the best features in this 

domain. The best features in this group were the 

maximum and mean values of the coefficients of each 

sub-band of wavelet packets in level 3. The accuracies of 

the networks trained with these features were 95.6% and 

95% for the maximum and mean, respectively. When we 

used both of these features for training the network, we 

obtained a higher accuracy at 97.3%. The results obtained 

in this research show about 4% improvement compared to 

the previous work [15]. 
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