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ABSTRACT 

 

In this paper, a method based on the canonical correlation 

analysis (CCA) is developed for analysis of multi-subject 

fMRI data The CCA produces a linear combination of 

fMRI data (across subjects), and a linear combination of 

bases of signal subspace, so as they have maximum 

correlation with each other. 

Since, the method proposed in here, is a multivariate 

analysis, we can simultaneously, use time series of 

analogous voxels of all subjects and optimal bases of 

signal subspace. This in turn, increases the flexibility 

through detecting different shapes of hemodynamic 

response in different regions and subjects. Using 

proposed method for analyzing the simulated data 

illustrates that, this method is more sensitive for detecting 

active voxels. Applying this method on experimental 

fMRI data, demonstrates that this method, has the ability 

of detecting more activated regions than that of general 

linear model (GLM). 

 

1. INTRODUCTION 

 

Two main reasons motivate investigators for group 

studies. The first reason is investigating the differences 

between individuals which may be important in many 

disciplines of psychology. And the second is to 

investigate the between group differences e.g., difference 

between the active regions of a healthy group and those of 

a non-healthy group in cognitive strategies during tasks 

[1]. We purposed a new method for these investigations. 

Some previous methods, based on correlation, have been 

extensively applied to single subject analysis and are still 

considered as robust approaches for functional MRI 

(fMRI) analysis. The conventional cross-correlation and 

t-test methods can not be applied to fMRI data sets for 

multi-subject analysis, directly. 

The methods based on General Linear Model (GLM) 

framework have been widely used for group analysis of 

fMRI data. For applying these methods, one must do the 

following stages. In the first stage, a statistical map is 

derived for each subject and the "effect" of interest, and 

its standard error are derived for each voxel of each 

subject. In the second step, (the second level) the 

"effects" and "standard errors" of different subjects are 

combined with each other. Finally, the decision is made 

with the use of group t-test [2]. In order to overcome 

some deficiencies in previous GLM methods, a new GLM 

method called “variance ratio smoothing” has been 

presented, by Worsley et al. [3]. 

In this paper by using the multivariate analysis (canonical 

correlation analysis) we develop a new method for testing 

the correlation between a set of fMRI data and the bases 

of a signal subspace. 

Applying multivariate analysis methods, such as 

canonical correlation analysis proposed in here, provide 

us with the ability of multi subject analysis in a single-

level and consequently, the sensitivity of group analysis to 

time series of different voxels, increases. 

In the conventional multi-subject analyses, the brain 

hemodynamic system is assumed to have an impulse 

response correspondent to a Gamma function or 

difference of two Gamma functions [3]. Because of the 

variation of the hemodynamic response function among 

different subjects/regions, this assumption may reduce the 

sensitivity of group analysis for detecting active regions 

with different hemodynamic response functions. In this 

paper by using the bases of a signal subspace according to 

Hossein-Zadeh et. al [4], the sensitivity of the method for 

detecting different regions are increased. 

CCA method has been used previously in single-subject 

analysis [5]. In former reference, Friman et al. applied the 

canonical correlation analysis on the time series of a 

neighborhood and the bases of a signal subspace (the 

Fourier series bases of the stimulation pattern), in order to 

detect the activated areas. 

 

2. THEORY 

 

Canonical correlation analysis (CCA) is a multivariate 

method developed by Hotelling in 1936 [6]. This method 

may be considered as an extension of the conventional 

cross-correlation analysis. This method has been 

previously applied to the single subject analysis of fMRI 

data [5]. We proposed to use this method for multi-

subject analysis of the fMRI data. This has two 



advantages: First, this method can use the time series of 

similar voxels of all subjects simultaneously and 

adaptively. Secondly, by using the bases of a signal 

subspace, it increases the detection sensitivity through 

detecting different shapes of hemodynamic response.  

Suppose that the fMRI time series are put in the rows of 

matrix X.  A linear combination of these time series (with 

weights wx) can be formed by XwT

x x . If the bases of 

the signal subspace are put in the rows of matrix Y, then a 

linear combination of the bases can be similarly formed 

via YwT

y y .  Therefore the cross correlation 

coefficient between two resulted time series is 
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Where Sxy and Syx are inter-set correlation matrices and 

Sxx and Syy are intra-set correlation matrices. The main 

objective is to maximize the correlation above. According 

to the canonical correlation theory [5], the unknown 

vectors wx and wy and ρ must fulfill the below relation. 
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(2) 

 

The wx and wy, obtained from the above expressions, are 

eigenvectors of the matrices yxyyxyxx SSSS 11 
 and 

xyxxyxyy SSSS 11  , corresponding to their largest eigenvalue. 

And the largest eigen-values of these matrices are equal 

and become the square of the maximum correlation. 
 

 

3. MATERIAL AND METHOD 

 

3.1. Experimental data 

 

A set of sensory-motor fMRI data is analyzed in this 

research. This set is provided by fMRI data center [7]. 

The task was event-related fMRI experiment in a 1.5 T 

scanner. During the experiments, 128 T2*-weighted 

volume images were acquired using asymmetric spin echo 

pulse sequence. Each volume image, consisted of 16 

slices and each slice was composed of 6464 pixels.  A 

set of anatomical images was also obtained from each 

subject, which consists of 128 sagital slices with 256×256 

resolution. Eleven young non-demented subjects were 

selected from these data. Their Anatomical images were 

transferred to the standard space of Talairach and 

Tournoux, and used for spatial normalization of 

functional images and transferring them into the standard 

atlas. Also the anatomical images were used to localize 

the active regions, in the AFNI software (Medical College 

of Wisconsin, Milwaukee, WI) [8]. The sub sampling 

process was conducted as 3×3×3 mm to provide 

54×64×50 voxels. 

Also the images were motion corrected using the AFNI 

software package [8]. Then a linear drift and the mean 

component were removed from time series of each voxel. 

 

3.2. Simulated data 

 

Two types of simulated data were used in this study. The 

first were 11 set of simulated rest data which was used for 

obtaining the histograms of methods under null 

hypothesis (no activation in the group). And the second 

were 11 set of simulated data with some active voxels. 

Each of the first sets contains 172800 time series with 124 

points. For generating the rest time series the Gaussian 

noise, was used with the mean value being similar to real 

data sets, and variance being equal to 2-hundredth of the 

mean value. Also, each of the second sets contains 

172800 time series with 124 points. They had active 

voxels in one slice, according to spatial pattern depicted 

in Fig. 1(a). The contrasts of the activation regions vary 

as %1, %1.25, %1.5, and %1.75 horizontally, and the 

noise variances selected randomly in the interval [4 10]. 

Simulated activation time-series consisted of 124 points, 

which have been obtained, convolving stimulation pattern 

with the HRF and then adjusting amplitude to desired 

contrast. The stimulation pattern was the same as 

stimulation pattern of experimental data.  HRF has been 

applied according to the following Gamma function: 
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In the above equation,  shows the location of the peak 

and  is related to the width of the peak [4]. In order to 

model HRF variations, parameters  and  were selected 

randomly within intervals [3   7] and [0.05 0.21] 

respectively.  This process was applied for each voxel. 

 

 
(a)                              (b)                           (c) 

Figure 1. (a)The spatial pattern of activation in simulated data, 

(b and c) Activated areas detected by CCA (b), and GLM (c) 

methods at false alarm rate of 0.0001. 

 
3.3. Method 

 

The proposed method in here consists of three steps for 

activation detection in multi-subject fMRI studies. In the 

first step, a matrix is defined as data for each voxel of 

brain. This step includes putting time-series of a voxels of 

all subjects in the rows of a matrix.  Fig. 2 shows the 

simple flowchart for analyzing the data. In the second 

step, by convolving stimulated pattern with the 

elementary functions, three time-series will be generated. 

(a) (b) (c) 



Putting these three time-series in a matrix, a signal 

subspace is made. In the third step, the desired statistical 

value (ρ) is obtained for each voxel, according to Eq. 

(2). In the end, values of ρ were thresholded with a 

threshold obtained from the simulated rest data according 

the below paragraph. In order to implement the methods 

based on GLM framework, the FMRISTAT Toolbox has 

been used [9]. 

Figure 2. Block diagram of the proposed methods for multi-

subject analysis. 

 

4. RESULTS AND DISCUSSION 

 

To evaluate the proposed method, it was compared to the 

GLM method (with variance ratio smoothing).  

Since the proposed method is a single level analysis and 

GLM is a two level method, and computing the threshold 

for controlling the type I error is difficult to drive 

analytically for CCA method, thresholds were found for 

each method using the simulated rest data. In each method 

we compare a parameter with a threshold to decide about 

the activation contents of a voxel. Analysis of rest data 

produces realizations of this parameter under null 

hypothesis, which can be used to construct the empirical 

histogram of it under null hypothesis. These histograms 

were used for obtaining the thresholds of each parameter 

for different false alarm rates. Fig. 3 shows the 

histograms, obtained by applying methods to simulated 

data. Also, Table 1 shows the numerical values of 

thresholds for different false alarm rates for both CCA 

and GLM.  

The methods were also applied to both simulated and 

experimental fMRI data sets. Fig 2(b,c) shows activated 

regions detected by these  methods at false alarm rate of 

=0.0001. And Fig. 4 shows the number of true detected 

active voxels in the simulated data set at different false 

alarm rates in the interval є[0.001 0.00007]. These 

results show that the proposed method provides improved 

detection sensitivity over the GLM method. 
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Figure 3. Empirical histograms of the statistical parameters of 

CCA (a) and GLM (b) under the null (H0) hypothesis obtained 

from simulated rest study. 
 

Table 2 lists the activation regions detected by CCA and 

GLM and Fig. 5 shows these regions. Comparison of 

results has been made in false alarm rate of 0.0002, and 

all single voxels were removed from the activation maps. 

As shown in Table 2 and Fig. 5 two method succeeded to 

detect activation in occipital cortex (BA 17, 18), 

precentral gyrus, superior frontal gyrus, marginal 

cingulate gyrus, thalamus, and precuneus as they were 

reported in previous fMRI investigations of visual task by 

[10-13]. 

 
Table 1. Thresholds of different methods in various false alarm 

rates (obtained from simulated rest data). 
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CCA 

0.53809 

0.5437 

0.54841 

0.56275 

0.57151 

0.57657 

0.58208 

0.60451 

0.61014 
 

GLM(DF= 99) 

3.3335 

3.4291 

3.5314 

3.7835 

3.8874 

3.9847 

4.0175 

4.0868 

4.3654 
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The proposed method detected activations in cerebellum, 

inferior frontal gyrus, cingulate gyrus (BA 24), and 

cuenus, where GLM method didn’t detect any activation 

(Fig. 5) Considering the previous reports [12] which 

detected activation in these areas, they may not be 

considered as false alarms. 
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Figure 4. True detected active voxels (true positives) in the 

simulated data for CCA and GLM methods 

 

5. CONCLUSION 

 

We presented a novel method for activation detection in 

multi-subject studies of fMRI data using CCA framework. 

This method is applied on simulated and experimental 

fMRI data. The comparison between the results of CCA 

and that of GLM on simulated data shows that the 

proposed method detected more positive active voxels in 

all false alarm rates. Also, the proposed method is capable 

to detect more significantly activated regions in 

experimental data, compared to GLM method.  

 
Table 2. Activated areas detected by two analysis methods in 

the experimental data. 

 GLM CCA 

Occipital cortex * * 

Precentral gyrus * * 

superior frontal gyrus * * 

marginal cingulate gyrus * * 

thalamus * * 

precuneus * * 

cerebellum -- * 

inferior frontal gyrus -- * 

cingulate gyrus -- * 

cuenus -- * 

 

The method proposed in here have more ability to cover 

wide range of HRF variations which is basically due to 

using bases of a signal subspace. The proposed method in 

the group analysis level avail themselves of all of the time 

series while the methods based on GLM take the use of 

merely two parameters obtained from each of the time 

series. Based on the two mentioned factors, the proposed 

method has more sensitivity in comparison with the 

previous methods. 

 

  

  

  

  

  

Figure 5. Five different views of brain activated areas detected 

by CCA (left column) and GLM (right column). Activation is 

detected in: 1st row) cerebellum and precentral gyrus; 2nd row) 

Thalamus and cingulated gyrus; 3rd row) cerebellum, occipital 

cortex and superior frontal gyrus; 4th row) precuneus; 5th row) 

inferior frontal gyrus and mariginal cingulate gyrus. 
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