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Abstract—In this paper, we propose an atlas-based method for 

hippocampus-amygdala complex segmentation. An atlas was 

registered on all subjects and its transformation was calculated 

for each subject. This transformation was applied to the 

structural segmentation of the complex obtained from atlas to 

construct an initial surface for the hippocampus-amygdala 

complex of each subject. A possibility approach was introduced 

for the segmentation process. Two different kinds of 

deformation based on edges and information obtained from 

tissue segmentation have been used to find different parts of 

the complex. A new energy was defined to use tissue 

information. This energy is adopted to expand the model to 

embed more dominant gray matter points in the volume and 

also withdraws from dominant white matter and CSF points. 

The initial shape was divided into several parts. In the normal 

direction of the center of each part, we constructed a profile 

which searched for the best point which maximized this new 

energy. This algorithm is reliable for finding the overall shape 

of the complex. It overcomes the poor features of the complex 

such as weak edges and noise. The algorithm was examined on 

5 different subjects and validated using two different validation 

methods. 
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I.  INTRODUCTION 
 

 The amygdala is an almond-shaped structure, which is 

situated anterior and partly superior to the tip of temporal 

horn of the lateral ventricle [1]. The hippocampus is a 

cylindrical structure, voluminous interiorly, extending as 

much as 4-5 cm from the tip of the temporal horn to the 

splenium of the carpuscallosum where it becomes 

continuous with the fornix. The hippocampus commonly is 

divided into three parts: head, body, and tail [2]. 

       In the coronal view of brain images the boundary 

between hippocampus and amygdale is often indistinct. In 

fact, amygdale and hippocampus were separated just with 

the landmarks of temporal horn of lateral ventricle. These 

landmarks usually are so vague and tolerable that even for 

an expert, it is impossible to say where the exact boundary 

between amygdale and hippocampus is. However, this 

boundary may be seen more clearly in sagittal views.                

One way to distinguish these two structures is to segment 

these structures in sagittal slices from each other and then 

cut the volume is coronal view. The points obtained from 

previous stage of segmentation in sagittal view appear in the  

coronal view and make the boundary between amygdala and 

hippocampus [1]. Because the boundry between amygdala 

and hippocampus was not apparent in our data set, we 

decided to segment the whole complex of these structures 

altogether. 

     We used a deformable surface for this purpose. A 

powerful method for finding an object in a 3D image is 

deformable surface [3], [4]. This surface usually moves 

towards the desired object with information extracted from 

geometrical features (internal forces) and information 

obtained from edges and grayscales of an image (external 

forces) [3]. But when an image includes noise or weak 

edges, such as hippocampus-amygdala complex, the model 

should move toward the target passing weak edges and 

partial volumes [5].   

      We propose a method to solve this problem using 

information obtained from the tissue segmentation. We 

introduce three kinds of deformation that each one has a 

kind of effect in the deformation process.     

   

         

 

II.  METHODOLOGY 

 

 The basis of the simplex meshes model was used as the 

basis of our model. The simplex meshes model is a 3-D 

deformable surface. At the first, it was used as a 

representation [6] model but after that Delingette. et al used 

it for segmentation purposes.  

      As seen in Fig.1 each vertex of the simplex mesh has 

only three neighbors. We used this model because the 

calculation of the normal vector and curvature is straight-

forward and can be extracted from any triangulation 

algorithm using duality property between simplex meshes 

and triangulation [7]. 
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Fig. 1. Duality between triangulation and simplex meshes. 

Solid lines are lines of triangulation. 
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As mentioned before in this model each vertex is connected 

to three neighbors. The normal vector at each vertex is 

computed as: 

 

 

 

 

 

 

As seen in Fig.2, The positions of the three neighbors of i-th 

vertex are shown by )()()( 321
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                                        in                             

 

 

Fig. 2. A typical vertex with its three neighbors. 

 

The segmentation process is divided to these steps: 

1) Initialization: This is the first step of the 

deformation that has fundamental rule in 

deformation process. In this step, a deformable 

surface is put near the hippocampus-amygdala 

complex. The more adjacent to the border, the 

better segmentation result. An atlas-based method 

was used for this purpose. We used SPM (statistical 

parametric mapping) toolbox [8] as a registration 

tool and projected a structural segmentation of the 

complex on the subjects’ MRI. This used an affine 

transform obtained from the atlas registration to 

these subjects. Because we did not use nonlinear 

transformations, in some parts of the initial 

complex, the model deviated greatly from the 

desired structure. Thus, an erosion algorithm was 

done on the initial shape on each slice to close this 

shape to a region of interest and then we 

constructed the initial surfaces.  

2) Initial model: After initialization, isosurface 

algorithm was exerted on the initial shape and 

triangulation model of the surface was extracted. 

3) Simplex meshes model: From duality property 

between simplex meshes and triangulation [7], 

vertices and faces of simplex meshes were 

extracted (see Fig. 1). 

4) Deformation: After constructed, the model must 

deform. Three kinds of deformation are proposed: 

A) Deformation based on a new gradient 

based force that pulls different parts of the 

model with its related vertices to the 

desired edges. This force is defined as: 
 

 

 

                             

where j depicts the cluster or part number       

and i is the vertex number. For each 

cluster, we found the center of the cluster 

(
jS ) and the normal vector was computed 

at the center of each cluster ( jn ). For 

each vertex, a fuzzy membership function 

was introduced which determined the 

membership of each vertex to each cluster 

( iju ). We used Euclidean distance 

( ),( jid SP ) for the definition of iju :  
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The position of vertex i is represented by 

iP and jex,F  is an external force which 

is defined in [3] and is enforced to the 

center of the j-th cluster: 
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No internal forces are defined in this kind 

of deformation because the curvature 

continuity constraint will be satisfied with 

this special kind of deformation. One 

vertex moves mostly in the direction of 

the normal vector of the part that this 

vertex has the most membership to it. It 

makes different parts of the model move 

smoothly. For each vertex we have: 
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iP  is the position of the i-th vertex  

 in t+1 iteration and  is the factor that    

determines  the rate of deformation.  
B) The second kind of deformation is 

based on tissue segmentation. With FSL 

(FMRIB Software Library) software [9] 
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each brain was divided into 3 separate 

volumes of gray matter, white matter and 

CSF. In each part of the model which 

must deform with this method, a profile is 

constructed at the position of the vertex 

that is representative of that part. This 

profile is constructed in the normal 

direction of this vertex and has 7 points. 

We search in the direction of this profile 

to find the point that maximizes this 

energy function:      
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This energy is adopted to expand the model 

to embed more dominant gray matter points to 

the volume and also withdraws from dominant 

white matter and CSF points. N is the number 

of points embedded by the deformable surface. 

In the direction of each profile, we change the 

position of the center of each part. The position 

of the vertices changes according to the 

following equation: 
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 where
t

ki ,P  is the position of the i-th 

vertex when the center of the j-th cluster 

or part moves to the k-th point of its 

normal profile. After each step of the 

search, we find the energy defined in 

equation (6) and is related to move the 

center of the j-th part to k-th point of its 

profile. In each step of search on this 

profile, some points may add or subtract 

from the points embedded by the surface 

and N may change. If a part of the model 

is in a CSF or white matter dominant 

region, the model tries to increase energy 

by going to the point at the profile that 

eliminate these points and if it is in the 

gray matter dominant region, it will be 

expanded to embed more dominant gray 

matter points. The point which has the 

maximum energy among these 7 points is 

selected as target point and the model 

deforms to this point. To avoid the 

redundant calculation we used a threshold 

value for membership function. It means 

that if  iju  is lower than a threshold value, 

we won’t move its related vertex position 

at all.  

It causes the model to deform only in the 

vicinity of the j-th part. 

C) After reaching to the vicinity of the 

complex border, the model moves to the 

border precisely and will find the details 

of the border. This step is done similar to 

the previous deformable models. We used 

internal forces and external forces which are 

defined in the [3].          
5) From duality property between simplex meshes and    

triangulation [7], vertices and faces of the 

triangulation model were extracted. We did this 

process because we needed to visualize the surface 

as a triangulation model and we didn’t access to the 

simplex meshes viewer. 

6) We used two criteria for validation of the results. 

One of them was the measurement of the percent of 

intersection between this method of segmentation 

and manual segmentation. The Tanimoto measure 

between two sets X and Y is defined as: 
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Because we had the manual segmentation of this 

complex in each slice separately, we had to cut the 

final surface after deformation in each slice, but 

some vertices put between two slices in the final 

surface. If we wanted to give these vertices to the 

slice that is more adjacent to these vertices, in 

another slice might cause discontinuity. 

Consequently, we defined another volume which 

had a value that determined each voxel has how 

much membership in the final segmentation. The 

woxels which put into the surface had the value of 

1. But the voxels which put in the vicinity of the 

border may have any value between 0 and 1 

according to the Euclidean distance to the nearest 

vertices of the model. When we want to calculate 

the number of voxels which intersect to the manual 

segmentation, the voxels in the border are counted 

with their value between 0 and 1. 

          Another criterion used specially for this 

complex segmentation was the percent of gray 

matter which put into the surface. Because we used 

fuzzy tissue segmentation, each voxel in the gray 

matter volume has a membership between 0 and 1. 

We added the membership of the vexels which put 

into the surface ( intGM ) and divided it to the 

numbers of these points (N). We called it 

possibility factor (P.F).    
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III.  RESULTS 
 

        We implemented this method on volume MRI images 

of 5 subjects whose manual expert segmentation of 

hippocampus were also available. This data was obtained 

from Internet Brain Segmentation Repository (IBSR). 

Because in some parts of the complex we have weak edges 

when the complex deforms just with the forces which are 

defined based on gradient, it’s trapped to these weak edges 

and can’t reach to the strong edges. After 3-D structural 

projection of complex to each subject, in each slice that we 

had this complex, this part of complex was divided to 8 

parts (see Fig.3). In the superior parts and parts which are 

adjacent to the medial and lateral parts of the image, we 

have partial volumes which produce several layers of weak 

edges. If initial shape is far a way from strong edges, it will 

be trapped to these weak edges. In the inferior parts of the 

complex, we have a thin layer of white matter that can be 

detected with gradient based external forces. We found 

adjacent vertices of deformable surface to the representative 

of each part. At the inferior parts of the surface, the vertices 

deform with equation (5) but at the other parts, they deform 

with equation (7). Finally, a final tuning was exerted on all 

vertices. The result of deformation is shown in Fig. 4. For 

validation of the method, we used two criteria. First, we 

found the percent of intersection between manual 

segmentation and segmentation using this method. But we 

also validated our method with a possibility factor which is 

related to this complex specially. Because we knew that this 

complex is constructed by gray matter, we computed the 

average of gray matter of all voxels embedded by 

deformable surface. Table1 shows the results of this method 

for right Hippocampus-Amygdala complex segmentation of 

5 subjects.  

 

 

 
 

 

 

 

 

 

 

 

 

IV.  DISCUSSION 

 

 In this paper, we proposed a knowledge-based 

deformable surface which moves toward target with a multi 

approach of deformation depending on the parts that move. 

We divided this model to separate parts and these parts with 

their adjacent vertices move toward the desired object. After 

reaching to the vicinity of the object, we did final tuning on 

the model. This model has some advantages and 

disadvantages. Its advantage is that because it uses tissue 

and edges information simultaneously, it can make a reliable 

decision. The results also confirm this claim. But its 

disadvantage is that it can not be extended to the other 

structures because this method is designed only for this 

structure and purpose. It is not generic. The other 

disadvantage of this method is the time consuming and 

boring computation especially with PC. Because the 

algorithm must check any changes that occur in the energy 

function related to the changes of the points of the model, it 

takes much time to be done this computation by PC. In the 

future works, we will follow an approach to separate 

hippocampus and amygdala from each other and also 

introduce a method to optimize the computational aspects of 

the algorithm.   
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Fig. 3. Intersection of 3-D deformable surface with one 
slice. Each slice is divided to 8 parts and after that the 

nearest vertex of the deformable surface is selected as 

the center of this part. 

Fig. 3.  Deformation process on slice 61. (a) initial contour after registration  
(b) final cut of the surface after deformation. (c) manual expert 

segmentation. The red contour is hippocampus and green contour is 

amygdala. 
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TABLE I 
Possibility factor and percent of intersection between manual and 

automatic segmentations. 

Subjects 1 2 3 4 5 

Possibility factor 0.84 0.82 0.82 0.83 0.82 

Percent of intersection 85 87 82 78 80 

 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/

