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Abstract—There is a growing interest in studying the common
features from multiple data sources. Fusing information that
come from multiple heterogenous data sources promises to iden-
tify complex multivariate relationships among the heterogeneous
sources. Such relationships can provide additional connectivity
across the sources. A common way to analyze the relationships
between a pair of data sources based on their correlation is
canonical correlation analysis (CCA). CCA seeks for linear
combinations of all variables from each data set with maximal
correlation between the two linear combinations. However, the
existence of non-informative data points and features makes it
challenging for CCA to identify significant relationships among
the examined data sets. In this paper, we propose a novel
method, NOFA, Noise-Outliers Free Algorithm, that can be used
to filter out the non-informative data points and features before
applying the CCA. NOFA was applied to preprocess two epilepsy
modalities, the MRI and neuropsychology, prior to applying CCA
to find the association between them. The results show that the
proposed method leads to interpretable results when noise plays
a significant role in the acquisition of the data.

Index Terms—canonical correlation analysis; regularization;
noisy features; outliers; principal component analysis.

I. INTRODUCTION

Recently, there has been an increasing interest in study-
ing and extracting the common features from two sets of
quantitative variables observed on the same experimental units
[8]. Highlighting significant relationships between two sets of
variables is important for many real-world applications [3].

In multivariate data analysis, generally, there are two stan-
dard techniques for extracting correlated features from two
sets of variables: Partial Least Squares regression (PLS, [13],
[6]) and canonical correlation analysis (CCA, [4]) [3]. PLS is
appropriate when there is a dependency among the two sets
of variables. In other words, PLS is suitable when one set of
variables can be explained by the other set [3]. On the other
hand, CCA is more suitable when the two sets of variables
have symmetric role in the analysis, and the objective is to
analyze the correlations between them [3], [2].

CCA is an old multidimensional explanatory statistical
method that explores the sample correlations between two
spaces of different dimensions and structure observed on the
same experimental objects [4], [12]. More precisely, the main
objective of CCA is to identify the linear combinations of
all variables from each data set, such that the correlation
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between the two linear combinations is maximized [12], [8].
A necessary condition that is usually advocated to perform
CCA is that n > p 4+ g + 1 [3], where n is the number of
observations and p and ¢ are the number of variables in the
first and second data sets, respectively.

One of the main weaknesses of CCA is that when the data
set is noisy, the solution changes dramatically. CCA does
not handle noisy data sets properly. The existence of non-
informative data points and features makes it challenging to
find meaningful relationships among the examined data sets
using CCA.

In this paper, we propose a novel method, NOFA, Noise-
Outliers Free Algorithm, to preprocess the data and remove
non-informative features and data points based on principal
component analysis (PCA). Next, CCA is applied on the
cleansed version of the data sets to find the maximally
correlated features. The proposed method is well-suited to a
number of real life application. We provide the results of the
experiments in a medical application. More specifically, we
applied our method on two modalities of the epilepsy data
set and we show that its interpretation evidences meaningful
relationships between the filtered features. The paper is struc-
tured as follows: in the next section we describe the motivation
for our method using a synthetic data set. In section I11,
we describe the proposed method, NOFA. In section IV, we
present the results of our method. Section V' concludes the

paper.
II. MOTIVATION

Outliers and noise are unavoidable in real life data sets
obtained from numerous application domains. In the medical
domain, noise plays a significant role in the acquisition of
data. For example, medical data records naturally contain non-
informative data points and features. CCA and its variations
do not handle noisy data properly. This is illustrated in the
following experiments. We generated two data sets with some
correlated features measured on twenty objects. The first data
set has six variables (pi,...,ps) and the second data set has
six variables (q1, ..., g ). The variables p3 and p4 from the first
data set have local correlation. The variables ¢; and ¢» from
the second data set have significant local correlation. Also, the
variables g3 and g4 have strong local correlation. Variables p;



TABLE I
SUMMARY OF THE SYNTHETIC DATA SET CORRELATIONS. LOCALLY
CORRELATED MEANS THE CORRELATIONS EXIST IN A SINGLE DATA SET,
WHILE GLOBALLY CORRELATED MEANS THE CORRELATIONS EXIST
BETWEEN THE TWO DATA SETS.

[ Features [ Description |
(p3,pa) locally correlated
(q1,92) locally correlated
(g3, q4) locally correlated
(p1,q1) globally correlated
(p2,92) globally correlated
(p3,94) globally correlated
P5,P6,45,96 | noise features

Fig. 1. Variables plots for the first and second dimensions of CCA applied
on synthetically generated data sets without adding the noisy features.
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and ¢; have the strongest positive correlation from the two
data sets, followed by the variables p; and ¢» and then the
variables p3 and g4. The variables ps, pg, g5 and gg are noisy
variables. Table I summarizes the correlations exist in the data
sets.

Figure 1 shows the results of applying CCA on the synthetic
data sets without adding the noisy features. In this figure, we
show the scatter plots of the initial variables from the two
data sets. The most significant correlations are shown in the
ring defined between the two circumferences of the inner and
outer circles. Variables with a strong positive correlation are
projected on the canonical variates plane in the same direction
from the origin. On the other hand, variables with a strong
negative correlation are projected in an opposite direction from
the origin. As the figure shows, the variables p1, p2, g1 and ¢
are projected in the same direction; which indicates a strong
positive correlation. The figure also shows the significant local
correlation between the variables g3 and 4. Moreover, the
figure shows that the variables p; and ps have a correlation
that is considered to be significant. And all of the variables ps,
P4, g3 and g4 have also a significant correlation. In fact, since
the variables p1, p2, q1 and gs and the variables g3 and ¢4 are
closer to each other than the variables p3 and p4, this indicates
that the former correlations are stronger than the latter one.

As 1t is well-known, outliers in a dataset are not consistent
with the rest of the data. In the second set of experiments,
we generated a few randomly distributed outliers; a few data

Fig. 2. Variables plots for the first and second dimensions of CCA applied
on synthetically generated data sets with the outliers added to pj.
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Fig. 3. Variables plots for the first and second dimensions of CCA applied
on synthetically generated data sets with the noise features added to the two
data sets.
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points that are arbitrarily far away from a sequence of identical
data points. More specifically, we added two outliers to the
variable p;. Figure 2 shows the results for CCA after adding
the outliers. Since p; has the outliers, CCA was not able to
discover the correct relationship of p; with the other variables.
As shown in Figure 2, p; is projected in the opposite direction
from the origin of the variables po, ¢; and g5 as opposed to
the projection shown in Figure 1. Hence, CCA shows negative
correlation of the variable p; with the variables ps, ¢; and g¢s.
In the third set of experiments, we added four gaussian noisy
features, two features to each data set. Figure 3 shows the
result of CCA after adding the noisy features, ps, pg, g5 and gg.
As the figure shows, the solution is changed in a very obvious
way when noisy features present in the data. Moreover, the
noisy features show strong correlations either with each other
or with other features. Such change in the results makes the
results less informative. More specifically, the noisy features
ps and pg are shown to have strong positive correlations with
the variables ps3, ps, g3 and g4. Moreover, the variables pg
and gg show strong negative correlation. Since noisy features
are meaningless, such correlations are not helpful and do not
make any sense.

The main objective of the proposed method is to remove the
outliers data points and noisy features prior to the application



of the CCA method. Noise plays a significant role in prevent-
ing the discovery of meaningful correlations. Hence, getting a
cleaned copy of the data is considered crucial before applying
any further processing.

III. NOFA: THE PROPOSED NOISE-OUTLIERS FREE
ALGORITHM

In this section, we present the details of NOFA, the Noisy-
Outliers Free Algorithm. The following notation is used
through the discussion of the method. G; and G2 are two
groups of measurements, with ranks M x P and M x @,
respectively, observed on the same set of objects, N. The i*"
column of (G is denoted as p(i), likewise, the i*" column of
G is denoted as ¢(¥). The k" row of G, or G is denoted as
Ok.

Our main objective is to identify and remove the non-
informative data points and features. We aim to remove
the outliers and noisy features so that CCA leads to more
meaningful results. The cleansing process is achieved using
PCA as the basic stone in the whole algorithm. In fact, PCA
is applied in an elegant way on each data set. The objective
of PCA is to find a new set of dimensions that captures the
variability in the data. PCA transforms the set of correlated
features into a smaller set of uncorrelated variables, called
principal components. The first principal component is chosen
to capture as much of the variability in the data as possible.
The second principal component, which is orthogonal to the
first principal component, captures as much of the remaining
variability as possible and so on [10]. PCA identifies the
strongest patterns in the data. Since noise has weaker patterns,
the use of PCA can eliminate much of the noise.

Algorithm 1 shows the basic steps in the filtering process.
Initially, the data sets are normalized so that each data set
has zero mean and one standard deviation. Generally, there
are two main steps to clean the data; filtering out the non-
informative features i.e., the noisy features, and filtering out
the non-informative data points i.e., the outliers data objects.
The output of the first step is the input to the second step,
which is the noisy-free data set. Since our ultimate goal is to
find correlated features from two sets of variables measured
on the same set of data objects, we need to check whether
the same data object is still present, in both data sets after
the filtration process or not. If a given object does not survive
in one data set i.e., considered as an outlier and removed,
this object will be removed also from the second data set and
that object has to be analyzed no further. Filtering out the
noisy features is done next followed by filtering out the outliers
data objects. Finally, a consistent view is constructed using the
cleaned copies of the data sets.

A. Noise removal stage

Algorithm 2 shows the process for removing the noisy
features. The process begins by fitting linear models (in the
Algorithm, it is called FLM) using PCA for every possible
feature pairs. In order to find a good line that models the
data, we use segments of the first principal component that

Algorithm 1 NOF A
Input: G; and G5: two data set of sizes M x P and M x Q,
respectively, observed on the same set of objects, M.
7n: outliers threshold that controls the percentage of the data
points to be considered as outliers.
«: a parameter that controls the contribution of standard
deviation in the beta threshold.
€: noise threshold that controls the percentage of the data
points to be considered as noisy features.
Output: Clean_G1 = K x L: the preprocessed data set of
K objects and L features, where K < M and L < P.
Clean_Go = K x L: the preprocessed data set of K objects
and V features, where K < M and V < Q.
Algorithm:
Normalize G and Go
G;l/ = Remove_Noisy_Feal/fures(G17 Q,€)
Gy = Remove_Outliers(Gy,n)
G?_/ = Remove_Noisy_Fea)/ﬁures(Gg, a,€)
G4 = Remove_Outliers(Gy,n)
Clean_Gy = U{G} (0;) : YO; € G} {3y € G, Ay = O,}}
Clean_Go = U{G2 (Ol) :VO; € G2 {Hd c Gl Ad = Ol}}

are bounded by 30/2 from the mean of the whole data set
(see Algorithm 4). The sum of the square distances, for all of
the data points, is computed from the linear model that is fitted
for each feature pairs. In fact, we divided the sum of square
distance for each linear model by V2, we call the new value
dist(p?,pl9)). Once the distance, dist, values are available
for all of the feature pairs, the 3 threshold is computed as
the following: 8 = M — « x std(dist) where
n is the number of elements of dist and std is the standard
deviation. The parameter o controls the contribution of the
standard deviation of dist to the (3 threshold. Note that /3 is
automatically set after getting the sum of square distances for
all feature pairs.

If the data are scattered in the feature spaces for a particular
pair of features, then the dist value for that pair will be greater
than [ threshold. We flag such a pair for further analysis
as there is a chance for one or both of the features to be
noisy features. However, if the principal curve for that pair
of features is good, then the computed dist value will be
less than the (3 threshold. Hence, such pairs are considered
as successfully passing the noisy features test. After checking
the dist values for all of the feature pairs and flagging the
suspect pairs, we count the frequency of each feature in the
suspect pairs. Those features that have their frequencies greater
than the user specified threshold (e), are considered as noisy
ones and hence are removed from the data set. Through this
approach, the noisy features are discarded and do not proceed
for the correlation analysis part. It is worthy to mention that
the user has the control over the percentage of features to be
considered as noisy features.



Algorithm 2 Remove_Noisy_Features

Input: D = M x N: data set of M objects and N features.
a: a parameter that controls the contribution of standard
deviation to the beta threshold.
e: noise threshold.
Output: D' = M x L: the preprocessed data set of M
objects and L features, where L < N.
Algorithm:
P=features(D)
for each pair p(¥) and p¥) € P do
[sqr_dist, proj_Ind] = FLM([p®, pt])
dist(pt), pl?)] = Tzt
end for @) ()
8= Lim dlsig(p P) o x std(p)
f={D,pY) : dist(p®,p) > 8,¥(p®,p9) € P}
for cach p*) € P do
count(p®)) = | f(p®), p®)[,vp) € P
end for
CNF = {p : count(pD) > ¢,¥p) € P}
D' ={D-CNF}

B. Outliers removal stage

The next step is identifying and removing outliers from
the remaining non-noisy informative features. Algorithm 3
describes the pseudocode for recognizing and removing the
outliers. Basically, a linear model is fitted once for all of the
features using PCA. As a result, the distance of each data point
from the fitted linear model, (sqr_dist), is computed. Next,
data points that have sqr_dist greater than a threshold () are
considered as outliers and removed from the data set.

Algorithm 3 Remove_Outliers
Input: D = M x L: data set of M objects and L features.
n: Outliers threshold.
Output: D" = K x L: the preprocessed data set of K
objects and L features, where K < M and L < N.
Algorithm:
[sqr_dist,proj_Ind] = FLM (D)
f={d; : sqr_dist(d;) > n,¥d; € D}
D" ={D-f}

Algorithm 4 FLM
Input: X: feature data set of dimensionality n x p
Output: Optimal_Linear_M odel fitted to the data.
sqr_dist: projection distance of the data.
proj_Ind: projection indices of the data points on the fitted
linear model.
Algorithm:
X_18t_PC = First_Principal_Component(X)
Optimal_Linear_Model = PC_Segment(X_1%¢_PC)
sqr_dist = Projection(X, Optimal_Linear_M odel)
proj_Ind = Rank_Data(X, Optimal_Linear_M odel)

Fig. 4. The variables plot for the epilepsy data set using the first two
dimensions obtained from CCA. The red circles are the MRI features, where
1 refers to volume ratio, 2 refers to intensity average, 3 refers to intensity
standard deviation and 4 — 10 refer to wavelet texture features. The blue
triangles are the neuropsychology features, where a refers to Rey-Osterreith
non-verbal memory immediate, b refers to Rey-Osterreith non-verbal memory
delayed, c refers to verbal 1Q, d refers to full scale 1Q, e refers to non-verbal
1Q, f refers to Boston Naming Test, g refers to Wechsler verbal memory
immediate and g refers to Wechsler verbal memory delayed.
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IV. RESULTS

In this section, we present the results of NOFA applied on
epilepsy data set. We evaluate the effectiveness of NOFA by
applying CCA after preprocess the data set using NOFA.

A. Epilepsy data set

The data set was generated from a study performed at
Henry Ford Health Systems on mesial Temporal Lobe epileptic
patients (mTLE). Temporal lobe epilepsy is a form of focal
epilepsy in which the patients experience recurrent seizures
arising from one or both of the brain’s hippocampus, an
inner aspect of the medial temporal lobe [5]. Approximately,
65% of epilepsy patients become free of seizures using anti-
epileptic medications [7]. Another 8 — 10% benefit from
surgical treatment [7].

A retrospective study on twenty eight unilateral mesial
temporal lobe epilepsies with Engel class Ia outcomes were
undertaken. Engel class Ia is used to describe patients who
rendered without seizures postoperatively. By setting class to
la, we establish a genuine criterion for laterality. The following
two sets of variables were acquired:

e MRI based features: Three sets of features were extracted
from each hippocampal region of interest (ROI): mean
and standard deviation of the FLAIR MR signal intensity,
wavelet transform-derived energy and volumetry. A ratio
of the measured values of the two hippocampi for each
feature is used to express the final value of the feature.
The ratio is taken for normalization purposes and to avoid
the problem of variance in FLAIR signal intensity from
case-to-case and scan-to-scan.

o Neuropsychology features: neuropsychological testing
measures simple and complex verbal and visual memory



Fig. 5. The individuals plot for the epilepsy data set using the first two
dimensions obtained from CCA. 1 means Left side lateralization and 2 means
right side lateralization
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[11]. One of the ideas that affect the pre-surgical decision
making for TLE is the segregation of verbal and non-
verbal forms of memory completely and their localization
to left or right hippocampi [9].

B. Discussion

The goal of the study is to find the correlated features in
each set of variables and to highlight the significant correlated
features from both sets. In this study, there is a need to find the
associations between neuropsychological testing results and
the FLAIR/T1 MRI results in order to be more accurate about
the laterality of this disorder. As it is known, medical data
has noise acquired with the data. So, we need to detect and
eliminate the noise. Figure 4 shows the variables plot for the
epilepsy data set after applying the preprocessing stage. In
this figure, we show only those correlations that are consid-
ered to be significant. Figure 5 shows the individuals plot,
where 1 means left side lateralization and 2 means right side
lateralization. As it is shown in the figure, the first dimension
of CCA was able to separate the data points in more than
80% accuracy. Actually, we got two instances having right side
lateralization that were not separated correctly. While there is
one case with left side lateralization that was misclassified,
although that point was close to the separation line.

Figure 6 shows an example of the outliers that are detected
and removed by NOFA algorithm. In this Figure, we show
three features, two from the MRI data set and one from the
neuropsychology data set. In fact, these three features (and
others) are found to be significantly correlated using CCA after
preprocessing the data sets using NOFA (see Figure 4). The
outliers are visually detected in this Figure and automatically
detected and removed using NOFA.

The complexity of PCA for a matrix of size M x N, where
M is the number of objects and NN is the number of features
is given by O(MN? + N3) [1]. In NOFA, since each time
we are applying PCA on only a couple of features, the time

Fig. 6. Original three features from the epilepsy data set. Two of them,
wavelet texture 5 and wavelet texture 7, are from the MRI study, while the
third one, Immediate Verbal Memory, is from the neuropsychology study.

Immediate verbal memory

‘Wavelet texture 5

complexity for PCA will be reduced to O(M). Hence, the
overall complexity for NOFA is O(M N?).

V. CONCLUSION

In this paper, we have proposed a preprocessing algorithm,
NOFA, that can be used to remove the non-informative data
points and features, that are most likely outliers and noisy
features, before applying the CCA method. The preprocessing
algorithm utilizes the principal component analysis method.
The need for the proposed preprocessing step tends to be
relevant to a number and a variety of real life applications
where the noise may be acquired frequently with the data,
such as the medical domain.
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