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ABSTRACT 
 
In this paper, we used a deformable surface model, called 
simplex meshes, for hippocampus segmentation in brain 
MRI. Major problems of the hippocampus segmentation 
are weak edges and noise that may cause deformable 
model to move in wrong ways. To overcome these 
problems, we used simplex meshes model, which has the 
capability to move roughly. To initialize the primary 
shape we projected an atlas to the real data using a 
registration algorithm. We selected some parts of the 
initial shape and exerted forces to the vertices of this 
shape, which is proportion to the distance to these parts. 
Displacement of these parts helps model to overcome 
weak edges and also prevents self-cutting of the vertices. 
Finally, we did a final tuning to reach to the small details 
of the edges.      
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1.  Introduction 
 
Simplex meshes model is a discrete model for the 
representation of a surface with arbitrary shape. This 
model has the capability to find a close shape or a shape 
with holes on its surface [1]. We use this model for 
hippocampus segmentation because computation of some 
features of surface such as curvature is easier in this 
model than other ones. Simplex meshes are capable to 
move to the surface of an object with multi level of 
rigidity [2]. This model uses internal and external forces 
like other discrete deformable surfaces to move to the 
edges of an object. Deformation of this model has two 
steps:  

1. In the first few iterations, it moves rigidly and has 
rough movement. 
2. After reaching to the vicinity of the borders, it 
moves with details. 

       We propose a method to improve the first step of this 
model deformation and also a method to overcome the 
self-cutting problem of the vertices of 3D models. We 
propose a surface like a balloon. When you push your 

finger to a balloon, all the points which are near your 
finger also will be pushed, but they will move less than 
where you put your finger. This movement prevents from 
arbitrary displacement of vertices, which may cause self-
cutting. 
       We implemented this method for hippocampus 
segmentation, which has discontinuous edges. Noise and 
artifacts have made the segmentation of hippocampus 
challenging [3]. In addition to these problems, 
hippocampus does not have clear superior border with 
amygdala, especially on coronal views. Slice by slice 
segmentation of this structure does not generate desired 
results because all the landmarks of this structure are not 
seen on the 2D views [4]. Thus, we used a 3D model that 
can move to arbitrary direction rigidly or with details. 
 
 
2.  Related Work 
 
Deformable surfaces are new generations of deformable 
models. The first generations are dynamic contours used 
for 2D segmentations [5], [6], [7]. But because 
deformable surfaces are able to use more information than 
dynamic contours to find an object in a volume, they are 
preferred. Two different kinds of deformable surfaces are 
now available: stochastic and non-stochastic models. 
Stochastic models are based on Cootes et. al. [8] efforts 
on active shapes and surface models. Non-stochastic 
models use rule-based methods that are based on 
information obtained from radiologists [9].  
 
 
3.  Original Model 
 
Simplex meshes model includes some vertices and faces. 
In this model, each vertex is connected to only three 
vertices. Simplex meshes can be extracted from a 
triangulation algorithm such as iso-surface method. There 
is a duality between triangulation models and simplex 
meshes model [2] (Fig. 1. a).  

       As seen in Fig.1, each vertex is connected to only 
three neighbors. The position of vertex i is represented by 
Pi. At each vertex, the normal direction is computed by: 
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The simplex angle iϕ  at each vertex is defined with 
following two equations:  
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Fig. 1. (a) Duality between triangulation and simplex meshes. Sol
are lines of triangulation. (b) A typical vertex with its three neighb
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where id is the distance between projection of  Pi in the 

plane constructed by its three neighbors and iC . 

 
4. Initialization 
 
• An atlas of hippocampus was constructed from MRI 
images of several subjects. Using FLIRT software [10] 
this reference volume was registered on each new 
volume. FLIRT applied an affine transform only. Then 
using the matrix obtained from FLIRT, atlas of 
hippocampus was projected to the new subject and initial 
shape was constructed. 
• After initialization, iso-surface algorithm on the 
initial shape was executed and triangulation model of the 
surface was extracted. 
• From duality property of simplex meshes with 
triangulation [1], vertices and faces of simplex meshes 
were extracted. 
 
5. Deformation Process 
 
5. 1 Rough Movement 
Most of the deformable surfaces used for hippocampus 
segmentation without stochastic information use internal 
forces and external forces to deform to the target. Internal 
forces usually are defined to hold the model as smooth as 
possible. Internal forces are functions of curvatures of 
vertices and are exerted to pull the model to the minimum 
curvature at each vertex. On the contrary, external forces 
are exerted to pull the model to the boundary of the 
desired object. In 2D segmentation, intersection of 
vertices rarely happens if vertices move in the normal 
direction. But in the 3D volumes, self-cutting is a usual 
event when a model tries to deform.  
 To overcome this problem, all the vertices of a model 
were divided to J clusters. For each cluster, we found the 
center of the cluster ( jS ) and the normal vector was 
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computed at the center of each cluster ( jn ). For each 
vertex, a fuzzy membership function was introduced 
which determined the membership of each vertex to each 
cluster ( iju ). We used Euclidean distance for the 

definition of iju : 

),(1
1

ji
ij d

u
SP+

=  

Using this definition, we introduced new forces as: 

jjjex

J

j
iji u nnFF ).( ,

1
∑

=

=    

where:  
)),,((2

, σGzyxI jjjjex ∗∇=F  
 

ii
t
i

t
i FPP ⋅+=+ β1                                                    

 
where σG is a 3D Gaussian kernel that smoothe
images and prevents the model to stick to the weak 
and βi is a constant that adjusts the displacement o
vertex. No internal forces are defined in the 
deformation because the curvature continuity cons
will be satisfied with this special kind of deformati
vertex moves mostly in the direction of the normal v
of the part that this vertex has the highest members
it. If a vertex does not have dominant membership t
cluster, it will move in the normal direction of tw
more clusters. This is like a balloon when you p
from two adjacent points. The points that are be
these two points move smoothly in spite of the dif
directional movements (Fig. 2). This kind of deform
also solves the self-cutting problem because it pre
the vertices from huge movements and limits them a
the center of the cluster which they have l
membership to it. 
 

 
 
 
 
Fig. 2. Representation of the idea of rough movement on a sphere.
 
 
 

5.2 Final Tuning 
After reaching to the vicinity of the shape border, the 
model will move to the border precisely and will find the 
details of the border. This step will be done like other 
deformable models. We used external forces defined in 
equation (7) and internal forces used in [2]: 
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where ∗
iP  is defined in equation (3). And ultimately: 
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iλ is a damping factor. ∗
iβ  is lower than iβ which is 

used in the rough deformation because after rough 
deformation, the model is in the vicinity of the border and 
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does not require high external forces. Internal forces are 
defined based on the distance from current vertex position 
to the desired position. The desired constraints are exerted 
on ∗

iP  that attracts iP  to itself. 

 Different constraints that can exert on ∗
iP  are found 

in [1].  We used simplex angle constraint with rigidity 
factor of two. Ultimately the simplex meshes model was 
converted to the triangulation model for visualization.   
 
6.  Results 
 
We implemented the proposed method on volume MRI 
images of 5 subjects whose manual expert segmentation 
of hippocampus were also available. This data was 
obtained from Internet Brain Segmentation Repository 
(IBSR). The total iterations that are required for the 
hippocampus segmentation is 100. Until iteration 30, the 
model deforms roughly and is fast but after this iteration 
because it wants to find details of the border takes long 
time to converge. We only found right hippocampus 
border for these patients. The inferior and anterior parts of 
the hippocampus were segmented precisely. The major 
problem was with superior parts. It is expected that the 
algorithm is not able to find the border between 
hippocampus and amygdala because there is no real edge 
between these structures in coronal views. But it could 
find this border well. The superior and medial part of 
hippocampus was the part that the model could not find 
the borders. The results of implementing this method on 5 
subjects compared with manual expert segmentation are 
represented in Table 1. Different slices of the 
hippocampus segmentation are also shown in Fig. 3 to 
Fig. 5. We cut the surface for each slice representation. 
 



 
7.  Conclusion 
 
In this paper, we applied and optimized simplex meshes 
model for the segmentation of hippocampus. We divided 
the segmentation process to two steps and also used an 
atlas for initialization. As seen in the results, the model 
could not find some parts of the hippocampus well. In the 
future work, we will try to move the model to the parts 
that are not segmented well currently.   
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Fig. 4.  Deformation process on slice 61. (a) initial contour after 
registration  (b)  final cut of surface after deformation . (c) manual 
expert segmentation.  At the superior and medial part of the 
hippocampus, the model could not find the borders.   
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Fig. 3.  Deformation
registration  (b)  fina
expert segmentation. 
been segmented very w
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 process on slice 59. (a) initial contour after 
l cut of surface after deformation . (c) manual 
It is seen that inferior part of hippocampus has 
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Fig. 5.  Deformation process on slice 61. This figure shows that the 
model does not penetrate to the amygdala body. The green structure in 
Figure (c ) is amygdale. The reason for thickening of the border in figure 
(b) is the vertices put between two slices that are projected to the nearest 
slice when a surface is cut.   
 
Table 1. Results of the implementation of the method on 5 different 
subjects for segmentation of body and head of the right hippocampus. 
The results show the percent of intersection between manual 
segmentation and initial shape and also between manual segmentation 
and segmentation obtained using the proposed method. 
 

Subjects 1 2 3 4 5 
Initial 
shape 

62.4% 60.1% 63.2% 66.5% 59.4% 

Final 
shape 

85% 83.2% 87.3% 90.1% 81.8% 
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