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ABSTRACT 
 
Magnetic Resonance Spectroscopic Imaging (MRSI) is a 
non-invasive technique for assessing biochemical 
fingerprint of tissue composition. The need to differentiate 
between normal and abnormal tissues and determine type 
of abnormality before biopsy or surgery motivated 
development and application of MRSI. There are several 
technical reasons that make the brain easier than other 
organs to be examined with MRSI. This paper presents our 
proposed methods and results for the analysis of the brain 
spectra of patients with three tumor types (Malignant 
Glioma, Astrocytoma, and Oligodendroglioma). After 
extracting features from MRSI data using wavelet and 
wavelet packets, we use artificial neural networks to 
determine the abnormal spectra and the type of 
abnormality. We evaluated the proposed methods using 
clinical and simulated MRSI data and biopsy results. The 
MRSI analysis results were correct 97% of the time when 
classifying the spectra of the clinical MRSI data into 
normal tissue, tumor, and radiation necrosis. They were 
correct 72% and 83% of the time when determining tumor 
types using the clinical and simulated MRSI data, 
respectively.  
 

1. INTRODUCTION 
 
One of the recent and important applications of nuclear 
magnetic resonance technology is Magnetic Resonance 
Spectroscopic Imaging (MRSI). This technique is used for 
noninvasive determination of biochemical properties of 
tissue useful for diagnosis and treatment evaluations [1]. 
To this end, certain parameters are extracted from the 
voxel spectra by applying complicated analysis on them 
[2]. In recent years, a variety of investigations and 
research have been reported on the diagnostic applications 
of these signals. In particular, proton MR spectroscopy has 
been used to detect and characterize abnormal tissue.  As 
in imaging, there are technical reasons that make the brain 
imaging easier than other organs: motion artifacts are 

minor, shimming is relatively easy to perform, and there is 
no detectible lipid in normal brain tissue [2]. In addition, 
due to non-invasive property of this method, it could be a 
good candidate for brain diagnostics. In brain MRSI data, 
detecting and extracting the peaks related to certain 
metabolites such as creatine (Cr), choline (Cho), and  
N-Acetyl Asparatine (NAA) are of significant importance 
[1]. Cr is involved in energy production in cell 
mitochondria. Cho takes part in membrane and 
neurotransmitter synthesis. NAA is contained only in 
neurons. Different kinds of brain lesions have certain 
effects on these metabolites [2]. Our goal in this research 
was to detect and segment tissue abnormalities by 
extracting the biochemical features related to these peaks 
in the MRSI data of brains with tumors. As discussed 
above, each of these metabolites has a specific role in the 
brain tissue and based on available clinical data, each 
brain lesion will have different effects on these 
metabolites. Therefore, applying appropriate processing 
methods to the MRSI data can be useful in differentiating 
between normal tissues and tumors and between different 
tumor types. Our final goal is to develop novel processing 
methods to determine the type of abnormality 
automatically. 

 
2. METHODS 

 
2.1. Preprocessing 
 
2.1.1. Noise Reduction Using Wavelets 
For many signals, the low-frequency content is the most 
important part. It is what gives the signal its identity. The 
high-frequency content, on the other hand, imparts flavor 
or nuance. In wavelet analysis, we often speak of 
approximations and details. The approximations are the 
high-scale, low frequency components of the signal. The 
details are the low-scale, high frequency components [3]. 
The noise components of a noisy MRSI signal have most 
of their significant coefficients in detail parts of the 
wavelet transform domain. We apply wavelet transform, 



 

 

vanish the noise coefficients by thresholding the detail 
components and take the inverse transform of the 
remaining coefficients to get denoised data.  The 
thresholding method compares details coefficients with a 
threshold estimated using Donoho�s proposition: 
 
                                   Ti=Cσi                                                               (1) 
 
where Ti is the threshold for the i-th level of denoising and 
σi is the median of absolute value of details in the i-th 
level, divided by 0.6754 [3]. We gave C a value of 3 and 
applied thresholding for 3 levels using coiflet3 wavelet. 
 
 
2.1.2. Noise Reduction Using Wavelet Packets 
De-noising is one of the interesting applications of wavelet 
packet analysis. The wavelet packet de-noising procedure 
involves four steps: 1) computing the wavelet packet 
decomposition of signal x at level N. 2) For a given 
entropy, computing the optimal wavelet packet tree. 3) 
Thresholding of wavelet packet coefficients. This 
threshold is a reasonable first approximation for most 
cases. However, it should be refined by trial and error so 
as to optimize the results to fit particular analysis and 
design criteria. We used SURE (Stein's Unbiased Risk 
Estimate) method in which the threshold equals [3]: 

                       ))(log(log2 2 nnT e=                          (2) 

where n is the number of samples in the signal. This 
method works well if the signal is normalized in such a 
way that the data fit the model x(t) = f(t) + e(t), where e(t) 
is a Gaussian white noise with zero mean and unit 
variance. Due to the nature of our signals they could be 
modeled in this way, therefore we used this thresholding 
method for 3 levels using Daubechie10 wavelet. 4) 
Computing wavelet packet reconstruction based on the 
original approximation coefficients at level N and the 
modified coefficients.  

 

2.1.2. Baseline Correction 
There are several factors that may introduce distortions to 
the baseline. For example, a delay between RF excitation 
and the beginning of the collection period produces a 
rolling baseline, even after appropriate phase correction 
for the delay [4]. For reliable evaluation of peak areas, all 
distortions must be as flat or as well defined as possible. 
Care must be taken with baseline correction due to the 
possible distortion of the signal intensities. As discussed 
the factors with most effect on this distortion are related to 
hardware and will appear in low frequencies of signal [5]. 
Therefore, we have developed a method for correcting 
baseline by thresholding the low frequency wavelet 
coefficients. 

 

2.2. Feature Extraction  
 
2.2.1. Wavelet Transform 
Due to the low SNR (Signal to Noise Ratio) of the MRSI 
data, automatic determination of the peaks locations is not 
simple [2]. One major advantage afforded by wavelets is 
the ability to perform local analysis � that is, to analyze a 
localized area of a larger signal [3]. We use wavelet 
transform (Daubechie10) for analyzing the local areas 
related to each peak and segregate metabolite peaks by 
thresholding the wavelet coefficients and finally 
reconstruct a signal from the remaining coefficients.  This 
signal contains the peaks without minor details that 
prevent automatic estimation of the peaks locations. We 
estimate the peaks locations from this signal. Then, we 
calculate the peaks features using the original signal 
that contains all the information.  The features extracted 
for each peak are: peak area, maximum value, bandwidth, 
and mean value of the wavelet coefficients in the peak 
region. The threshold value depends on MR scanner and 
patient conditions. Our approach calculates it 
automatically using the mean value of the wavelet 
coefficients. 
 

  
2.2.2. Wavelet Packets 
The wavelet packet method is a generalization of wavelet 
decomposition that offers a richer range of possibilities for 
signal analysis [3]. In wavelet analysis, a signal is split 
into an approximation and a detail. The approximation is 
then split into a second-level approximation and detail, 
and the process is repeated. In wavelet packet analysis, the 
details as well as the approximations can be split [3]. This 
offers the richest analysis: we applied wavelet packets 
algorithm to our signal for 3 levels (Daubechie10) and 
extracted the statistical parameters such as mean, 
maximum, and variance values of the coefficients of each 
sub-band. We used these statistical parameters as other 
features extracted from the signal. In this way, we had 
features expressing the whole signal characteristics despite 
the above method, in which we only used the features 
related to specific regions of the signal (metabolite peaks). 
 
2.3. Classification  
 
Artificial Neural Networks (ANN�s) are one of the most 
common classifiers used in MRSI processing [6]. We used 
multilayer perceptron neural networks to classify the 
features extracted from the spectra.  As mentioned before, 
we applied two processing methods to extract features 
from the signals. The first method using wavelet transform 
extracted the features related to metabolite peaks and the 
second one extracted several features expressing the whole 
signal characteristics.  We used these two classes of 



 

 

features in various sets to find the best features describing 
each lesion. 

In order to train the network and verify its ability to 
distinguish between different tumor spectral features we 
divided the available data into 2 sets. The first set was 
used for training and the remaining set was used for 
testing.  

 

2.4. MRSI Data  
 

To test and evaluate the proposed methods, we used 
clinical and simulated MRSI data. The clinical data were 
the MRSI and biopsy results from the brains of seven 
patients (mean age = 43, range = 38-50, two female, five 
male) affected by three types of tumors (Malignant 
Glioma, Astrocytoma, Oligodendroglioma) and focal 
necrosis. The MRSI data were acquired using a 1.5 T MRI 
System (GE Signa).  

To generate the simulated MRSI data, we constructed 
three main peaks for the brain metabolites using Gaussian 
functions. We compiled these peaks with random width, 
amplitude, and location, and with a background signal. To 
create the background signal, we used appropriate number 
of Gaussian functions with appropriate width, location, 
and amplitude. Finally, we added white Gaussian noise to 
the inverse Fourier transform of the spectra and 
reconstructed the results into the simulations. We also 
used the available clinical data and the effect of each brain 
lesion on the spectra to simulate the spectra related to each 
lesion. 

 
3. EXPERIMENTAL RESULTS 

 
Denoising results show about 5dB and 7dB SNR 
improvement using wavelets and wavelet packets, 
respectively. Therefore using wavelet packets could 
remove the available noise in MRSI signals better than 
wavelets. 

To evaluate the baseline correction, we calculated the 
correlation between the baselines removed in neighboring 
signals after applying the proposed wavelet-based method. 
The result was more than 83% on average for about 1000 
signals. Alternatively, a high-pass filter was applied to the 
signal whose results were 24% less effective than our 
proposed method. 

The results of classifying the extracted features into 
three classes (tumor, necrosis, and normal) for both of the 
methods are shown in Tables 1-2. As can be seen, we used 
different sets of the features for training and testing the 
networks to find the best features. In the case of wavelet 
features (which are peak features) we obtained the best 
accuracy when we used peak area ratios, which was 90% 
for the test data (see Table 1). We also used different sets 

of wavelet packets features separately to find the best 
features in this domain. The results of classifying these 
features show about 7% improvement compared to the 
previous features. This shows that these features can 
describe the spectra and the effects of lesions on them 
better than the previous ones. The best features in this 
group, as seen in Table 2, were the maximum and mean 
values of the coefficients of each sub-band of wavelet 
packets in level 3. The accuracies of the networks trained 
with these features were 95.6% and 95% for the maximum 
and mean, respectively. When we used both of these 
features for training the network, we obtained a higher 
accuracy at 97.3%. 

In the next step, we used artificial neural networks to 
classify the tumor spectra into 3 types (Glioma, 
Oligodendroglioma, and Astrocytoma).  Due to the sample 
size limitation, we used a leave one out method for 
training and testing of the network. We used the best 
features obtained in the previous methods (maximum and 
mean values of the coefficients of each sub-band of 
wavelet packets domain in level 3). The classification 
accuracy results were: 71% for Glioma, 75% for 
Oligodendroglioma and 69% for Astrocytoma. We also 
used the simulated spectra for each brain tumor type for 
training and testing of the network. The classification 
accuracy results were: 82% for Glioma, 85% for 
Oligodendro-glioma, and 83% for Astrocytoma. 
 

4. SUMMARY 
 

We have developed and applied novel processing methods 
to extract useful features from the MRSI signals and 
classify the spectra of the brain tumors. We considered 
two denoising methods using wavelets and wavelet 
packets to suppress the noise. The results of using wavelet 
packets were about 2 dB superior to those of the wavelets. 
We also removed the baseline distortions from the signals. 
Then, we applied the two preprocessing methods to 
prepare the signals for feature extraction. In the feature 
extraction step, we applied wavelets and wavelet packets 
as two separate methods. After applying the extracted 
features from each method to ANN, we obtained superior 
results using wavelet packets features extracted from the 
entire signal than the wavelet features extracted from the 
peaks. This suggests that brain lesions affect the entire 
signal in addition to the metabolite peaks. The best 
features were the maximum and mean values of the 
coefficients of each sub-band of wavelet packets in level 3. 
We also classified the tumor spectra into three types using 
the best features obtained. The classification results 
showed 72% accuracy for the clinical data and 83% 
accuracy for the simulated data. 
 
 
 



 

 

5. CONCLUSION 
 

MRSI signals can improve diagnosis of brain lesions 
based on their information about tissues biochemical 
construction. We developed and applied new algorithms 
for these signals. We were able to extract useful 
information for detecting and characterizing different 
brain lesions. The results indicate that the proposed 
methods extract from the MRSI data the effects of each 
brain lesion on the metabolites. Therefore, the proposed 
methods have the potential to non-invasively determine the 
type of the brain tumor. Future work needs to include 
more patients and other brain lesions. Feature extraction 
method needs to be optimized to improve the overall 
accuracy of the proposed approach. Because this approach 
is the only non-invasive method for biochemical 
identification, it has a great potential for brain diagnosis 
and may replace the conventional invasive methods such 
as biopsy [6]. 
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Table 1. ANN classification accuracy using the features extracted by the wavelets. Networks were trained and tested for different sets of 

features. The features were peak areas, peak area ratios, maximum values of the peaks, and peak widths. 
 

Features No. of    
Features 

Network 
Structure 

Overall 
 (%) 

Tumors  
(%) 

Radiation 
Necrosis (%) 

Normal Tissue 
 (%) 

All 15 15-20-3 88 94 86 85 
Peak areas 3 3-5-3 89 92 86 88 
Area Ratios 6 6-5-3 90 96 85 91 
Max values 3 3-7-3 82 87 88 72 
Peak widths 3 3-7-3 76 65 73 91 
Peak areas + 
Area Ratios 9 9-12-3 87 96 85 82 

Max values + 
Area Ratios 9 9-12-3 82 80 91 75 

      Peak widths + 
Area Ratios 9 9-12-3 81 75 78 92 

 
 

Table 2. ANN classification accuracy using the features extracted by the wavelet packets. Networks were trained and tested for different 
sets of features. The features were maximum, variance, and mean values of the coefficients of each sub-band in level 3. 

 

Features No. of 
Features 

Network  
Structure 

Overall  
(%) 

Tumors  
(%) 

Radiation 
Necrosis (%) 

Normal Tissue 
(%) 

All 24 24-12-3 96.6 98 96 96 
Max 8 8-10-3 95.6 96 95 96 
Variance 8 8-10-3 85 82 90 84 
Mean 8 8-10-3 95 95 98 93 
Max + Mean 16 16-10-3 97.3 98 97 97 
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