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ABSTRACT 
 

FCM suffers from some drawbacks such as a priori 

definition of number of clusters, unidentified statistical 

significance of results, and instability of results when it is 

applied on raw fMRI time series. Using the randomization 

we developed a method to control the rate of false 

positive detection in FCM which gives a meaningful 

statistical significance to the results. Making use of it, we 

derived the optimum number of clusters. In this study we 

applied the FCM on a feature space that takes the 

variability of hemodynamic response function into 

account and compared it with the cross correlation feature 

space.  
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1. Introduction 
 

Deoxygenated hemoglobin acts as an endogenous 

paramagnetic agent. Therefore, a reduction in the 

concentration of deoxy-hemoglobin increases the T2* 

weighted magnetic resonance signal. Based on this, 

functional magnetic resonance imaging (fMRI) measures 

changes in blood oxygenation and blood volume brought 

about by neural activity of the brain while a subject is 

performing some cognitive or motor task. 

 

The majority of fMRI practitioners currently use 

statistical techniques such as t-test or cross correlation to 

determine whether voxels of the brain show task related 

signal variation. In statistical methods, the resulting 

activation map is usually characterized with a significance 

level which determines the rate of false alarm occurrence 

(type I error). To compare such statistical methods, one 

should compare the results obtained with the same false 

positive rate. 

 

The main drawback of these methods is their assumptions 

or models of the noise structure, the statistical behavior of 

fMRI data, or activation procedure which may not be true. 

These assumptions bias the results obtained by such 

methods to the specific results especially in the cases 

where experimental conditions become more complex or 

when applied to data of different subjects [7]. 

 

Beside these model-based statistical methods, some 

model-free methods such as PCA, ICA, cluster analysis, 

and self organizing maps have been used [8]. In 

neuroimaging model-free analysis has been mostly carried 

out using clustering methods. The aim of clustering 

techniques is identifying regions with similar patterns of 

activation. They partition the brain voxels in some 

predefined number of clusters and one cluster will be 

chosen as the active cluster. Different clustering methods, 

such as k-means, Kohonen clustering neural network, and 

hierarchial clustering have been used in this field, but the 

most popular method has been fuzzy C-means (FCM) [2]. 

FCM gives the membership map of brain voxels in 

different clusters. After FCM convergence, the cluster 

with the most similar centroid to stimulation pattern is 

selected as the active cluster and the membership degrees 

of image voxels to this cluster (u) is compared with a 

threshold ua in order to detect activated voxels. 

 

Defining the right number of clusters is one of the main 

issues in clustering brain voxels. For this purpose some 

cluster validity measures have been proposed but this 

intensive search for a standard index has not yet 

succeeded [13]. Another drawback of FCM and other 

clustering techniques is their inability to assign statistical 

significance to the results. For example choosing different 

number of clusters, or thresholding the membership 

degree with different ua’s, lead to considerably different 

activation maps. Each result corresponds to a specific but 

unknown level of confidence. In other words, choosing a 

high ua or a high number of clusters decreases the 

probability of false detection. As a result, one cannot 

compare the results obtained by statistical methods and 

clustering methods. 

 

In order to limit number of false positives in clustering of 

fMRI data, Jarmasz et. al assumed a linear model for time 

series of each cluster. Each time series of a cluster is 

considered as the center of cluster multiplied by a 

correlation coefficient plus a residual sequence. Then 



significance of correlation coefficient is checked [14]. 

Baumgartner et. al did the same significance test through 

resampling the centers of clusters in time domain to avoid 

the model assumption [11]. Aufferman et. al proposed a 

method using bootstrap and Fisher‟s linear discriminant 

function, which relies on the multivariate normal 

assumption to assess the statistical significance associated 

with partitioning one cluster into two clusters or the 

inverse problem of combining two clusters into one 

cluster [12]. Here we propose a method based on 

randomization to evaluate the statistical significance of 

activation and to control the false detection rate in the 

fuzzy clustering analysis of fMRI. Making no specific 

assumption about the noise structure, the randomization 

procedure can provide the distribution of “the 

membership degree to the active cluster (u)” under the 

null hypothesis (resting state condition). Using this 

probability density function, we can determine ua in order 

to control false positive rate. We also suggest a method 

for determining the number of clusters using the 

procedure we introduced for false positive control. 

However, the procedure of controlling the false positive 

rate is independent from the number of clusters and the 

number of clusters can be found via any other approach. 

 

Clustering on the raw time series is potentially able to 

separate cognitive or hemodynamic effects without 

precisely modeling them. However, due to high noise 

level in fMRI experiments, the results of clustering on the 

raw time series is often unsatisfactory and does not 

necessarily group data according to the similarity of their 

pattern of response to stimulation. An associated concern 

is that increasing the size of clustering space leads to 

practical difficulties such as curse of dimensionality [2, 

10, 16]. Goutte et. al considered a feature space based on 

correlation between time pattern of stimulus and time 

series. They showed that clustering this feature space 

yields noise reduction, improved performance and 

robustness [2,10]. Therefore they assumed a fixed 

reference as the time pattern of activation to construct the 

feature space. However, the actual functional response 

which may differ in various brain areas, different subjects, 

and under different conditions even in a simple visual or 

motor task, is far more complicated than the usually 

assumed boxcar waveform [7]. Here we have used a 

feature subspace which takes into account these 

variability and compared it systematically with cross 

correlation feature space. 

 

 

2. DATA 
 

A. Simulated Dataset 

For a realistic simulation of fMRI data, computer 

generated „activation‟ time series were added to the 

measured time series of a single slice of a resting state 

experimental fMRI data in 116 voxels and with different 

contrasts (1%, 1.5%, 2%, and 2.5%). The activation time 

series was obtained by convolving a stimulation pattern (a 

boxcar function with five periods of 60 seconds ON and 

90 seconds OFF) with a Gamma function that models the 

hemodynamic response function (HRF). In order to model 

the variability of the HRF, the parameters of the Gamma 

function were varied randomly between different 

activated voxels. Fig. 1 shows the spatial location of the 

active voxels.  

 

 
Fig. 1. Spatial pattern of activity in the simulated data. Activations were 

added to the dataset in the regions shown. The activation contrasts for 

the columns (from left to right) are 1%, 1.5%, 2% and 2.5% , 
respectively. 

 

B. experimental Dataset 
Functional images were acquired from 6 normal 

volunteers using a single-shot GRE spiral scan sequence 

(TR=2 sec, TE=30 ms, FOV=22022096 mm
3
, matrix 

size=646424) on a 3 Tesla GE MRI scanner (General 

Electric, Milwaukee, WI, USA). The subject performed a 

finger tapping task with both hands. The task consisted of 

12 periods of 36 seconds, where each period contained 18 

seconds of finger tapping, followed by 18 seconds of rest. 

The first four volumes of the functional images were 

discarded and the remaining volumes were motion 

corrected using the AFNI software package [6]. Linear 

drifts and mean components were then removed from 

each voxel time-series.  

 

 

3. Methods 
 

Our proposed method consists of three steps. First, a set 

of features are extracted for each fMRI time series. This 

step will be explained in Section A. In the second step, 

FCM will be applied on proposed feature space for 

different number of clusters in order to select the 

optimum number of clusters using the method described 

in Section C. Finally, FCM will be applied with the 

optimum number of clusters. After FCM convergence, the 

cluster with the most similar centroid to the stimulation 

pattern is selected as the active cluster. Then, a statistical 

membership threshold (ua) corresponding to desired false 

alarm rate will be computed using the method proposed in 



Section B. Then, the membership degree of each voxel to 

the active cluster (u) is compared with threshold ua and 

voxels which have greater “membership degree to the 

active cluster” than ua will be considered as active voxels. 

 

A. Feature Extraction 
Clustering raw fMRI time series may lead to stability 

problems and the risk of clustering on the noise rather 

than on the activation because of poor fMRI signal to 

noise ratio. Therefore, feature spaces based on cross 

correlation of a fixed reference time pattern and fMRI 

time series has been used as a proper feature space for 

cluster analysis of fMRI [10]. However the hemodynamic 

response function (HRF) of brain has been shown to vary 

significantly between different brain areas or subjects [5]. 

The Gamma hemodynamic response function, commonly 

used in statistical analysis of fMRI, includes two 

unknown shape parameters that are usually selected a 

priori by the analyst. Hossein-Zadeh et. al [1] proposed a 

new method that approximates the Gamma HRF over a 

wide range of parameters by a linear combination of three 

elementary signals. These elementary functions were 

derived from singular value decomposition of a large 

number of signals generated by systematically varying the 

parameters of gamma function. The elementary signals 

together accounted for 99% of the total variation in the 

data. Figure 2 shows these signals. Convolving these 

elementary signals with the stimulation pattern provides 

three basis functions (z1(t), z2(t), z3(t)) for signal subspace. 

Therefore each fMRI time series may be considered as eq 

(1) where e(t) is the error term considered as noise. 
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The unknown coefficients 1, 2, and 3 may be obtained 

for each voxel through least squares (LS) estimation. 

These coefficients along with a conventional cross 

correlation coefficient cc, (the cross correlation between 

y(t) and the stimulation pattern) is proposed as a feature 

space for FCM clustering. We call this feature space 

HRF-based feature space. Considering the ability of the 

elementary functions to model the hemodynamic response 

variability the coefficients 1, 2, and 3 are supposed to 

provide appropriate features for clustering. 

 

B. False Alarm Rate Control 
After FCM convergence the cluster with the most similar 

centroid to stimulation pattern is selected as the active 

cluster and the membership degrees of each voxels to this 

cluster (u) is compared with a threshold ua in order to 

detect activated voxels. This threshold strongly affects the 

results significance.  But it has been chosen a priori and 

heuristically by investigators till now. By comparing u at 

each voxel with ua one tests the null hypothesis H0:‟no 

activation‟, and rejects it if u>ua. For controlling the type 

I error of this test at level α, the threshold ua must be 

found such that prob(u>ua | H0) = α. This requires the 

probability density function (pdf) fu(u|H0), which is 

difficult to derive theoretically. We propose a method 

based on randomization for finding this pdf. In this 

research, we use the resampling procedure introduced by 

Bullmore et. al [9], which permutates the wavelet 

coefficients of fMRI time series in order to make 

surrogate data under the null hypothesis. The wavelet 

coefficients (obtained using Daubechies basis with 4 

vanishing moments) of the fMRI time series are 

permutated at different levels of resolution (in 4 levels), 

and then an inverse wavelet transform is applied on them 

to generate various realizations of data under null 

hypothesis 
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Fig. 2. Convolving the above elementary signals with the stimulation 

pattern produces three basis functions (z1(t), z2(t), z3(t)).  

 

FCM clustering is then applied on each set of randomized 

data while we hold the center of active cluster found 

before randomization unchanged, and then the 

membership degrees of all voxels in the active cluster will 

be computed. These values construct an empirical 

histogram which estimates the required pdf fu(u|H0). 

Using this histogram one finds a proper threshold 

corresponding to the desired α. Thresholding the active 

cluster membership degree map of brain voxels with this 

threshold generates statisticaly meaningful results. 

 

C. Number of Clusters 
Logically choosing the optimum number of clusters in 

FCM leads to the most accurate detection of fMRI 

activation. The area under the Receiver Operating 

Characteristics (ROC) curve is commonly considered as a 

good criterion for characterizing the detection accuracy. 

We are facing two issues in using ROC curves in fMRI 

data analysis with fuzzy clustering: first we can not 

control the false alarm rate in activation detection via 

fuzzy clustering; second, there is no way to measure true 

positive detections when applying the method on 

experimental fMRI data. The first issue has been 

addressed with the method described in pervious section. 

To overcome the second issue, we used the fact that truly 

activated voxels tend to be spatially clustered, while 



falsely activated voxels will tend to be scattered so that 

one does not expect random spatial activations. These 

scattered voxels mainly appear as single voxels which are 

treated in many investigations as false detections and they 

are removed from the results [15]. We used the number of 

detected single voxels (voxels with no activated 

neighbors) as a criterion for estimating the false positive 

detection in experimental data. In fact based on spatial 

connectivity of active voxels, we are looking for the 

number of clusters that produces the most compact 

activation regions with less single voxels. 

 

For a particular number of clusters, we do the following 

setps; first we apply the method proposed in the previous 

section for various amounts of α in order to find their 

corresponding thresholds; using these thresholds then we 

find the corresponding active regions by thresholding the 

active cluster membership map obtained from fuzzy        

c-means clustering (FCM); Next an estimate of true 

positive detections is made by excluding the single voxels 

and counting the remaining voxels. We use these 

estimates in order to derive an estimate of  for different 

values of α. This produces a ROC curve for the specified 

cluster number. The area under this ROC curve in the 

interval   [0 0.1] (the common interval for alpha used in 

fMRI) is used as the cluster validity measure. By 

performing these steps one can measure the cluster 

validity for different number of clusters and then select 

the optimum number which has the maximum measure. 

 

 

4. Results 
 

An estimate of the false alarm rate of an fMRI detection 

method can be made by applying the method to the 

resting state data. In order to provide the resting state 

data, time series of activated voxels were discarded from 

each of 6 fMRI experimental data. After computing the 

cross-correlation map for each data, the active voxels 

were detected for false alarm rate of 0.1, and their time 

series were discarded from the data. This ensures us that 

the remaining voxels are in the resting state. The proposed 

method, explained in Section 3-B, was applied on each 

resting state data, and activated voxels were detected by 

assuming different false alarm rates. An estimate of the 

actual (occurred) false alarm rate is then made in each 

case by dividing the number of detected voxels to the 

number of voxels in the analyzed resting state data. 

 

Fig 3 graphs the expected false alarm rate versus the 

observed (measured) false alarm rate for one of the 6 

subjects. Table 1 shows the numerical values of theses 

parameters for all 6 subjects. This figure demonstrates the 

ability of our proposed method to control the false 

positive rate. In fact, using the pdf of u under the null 

hypothesis for choosing the threshold is the main 

foundation of false positive control. One of the estimated 

pdf‟s has been shown in Fig 4. 
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Fig. 3.The measured false positive rate versus its expected value in one 

of the 6 subjects. 

 
Table 1.Numerical values for Expected alpha value versus observed 

false alarm rate for 6 subjects. 

 

We have also examined our method for defining number 

of clusters on experimental dataset, and compared it to the 

results of SCF cluster validity measure proposed by fadili 

et. al [3]. In 4 out of 6 subjects two methods derived the 

same number of clusters, whereas in 2 subjects their 

proposed “number of clusters” were different by 1. 

However, by repeating the procedure, our method shows 

less sensitivity to the initial values of FCM. Fig 5 shows 

the ROC curves, corresponding to one of experimental 

data, obtained by different number of clusters. This graph 

suggests N=6 as the optimum number of clusters. 

 

Although our proposed method for false positive control 

can be used in applying the FCM on any kind of feature 

space, we have shown that the HRF-based feature space 

provides improved detection sensitivity over the cross-

correlation feature. FCM clustering activation detection 

with controlled rate of false alarm was applied on both 

simulated and experimental fMRI data using both feature 

spaces. m=2 suggested in [4] was used as fuzziness index 

of FCM. In simulated data, where an ROC curve can be 

 
alpha 

subject 
1 

subject 
2 

subject 
3 

subject 
4 

subject 
5 

Subject 
6 

0.01 0.0102 0.0108 0.0102 0.0119 0.0111 0.0111 

0.02 0.0196 0.0197 0.0196 0.0222 0.0209 0.0213 

0.03 0.0307 0.0307 0.0299 0.0324 0.0298 0.0307 

0.04 0.041 0.0418 0.0392 0.0469 0.0444 0.0444 

0.05 0.0503 0.0512 0.0496 0.0503 0.0529 0.0518 

0.06 0.0597 0.0614 0.0597 0.064 0.0631 0.0631 

0.07 0.07 0.069 0.07 0.0694 0.0725 0.0725 

0.08 0.0802 0.0811 0.0785 0.0833 0.0811 0.0819 

0.09 0.0896 0.0904 0.0887 0.093 0.0904 0.0904 

0.1 0.0998 0.1024 0.099 0.1058 0.1038 0.1041 



derived, the HRF-based feature space demonstrates an 

improved sensitivity (Fig. 5). 
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Fig. 4. Empirical histogram of “membership degrees to the active 

cluster” under the null hypothesis, obtained by randomization in one of 

experimental data sets. This histogram has been used as an estimate for 
fu(u|H0) in that subject. 
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Fig. 5. The ROC curve for N=2,4,6,7. 

 

Finger-tapping paradigm regularly produces activation in 

the sensorimotor cortex (SMC), supplementary motor 

area (SMA), and cerebellum. Activity in the sensorimotor 

cortex produces transient neural activity in subcortical 

regions [5]. Moritz et. al reported activation detection in 

subcortical regions by changing the temporal duration of 

the reference function [5].In the experimental fMRI data, 

using HRF-based feature space revealed activation in sub-

cortical regions where the cross-correlation feature failed 

to detect them. Table 2 shows the activated regions of 

both feature spaces, and Fig. 6 shows an example of such 

a case. These results are consistent with the study 

performed by Moritz et. al [5]. 

 

 

5. CONCLUSION 
 

A method for controlling false positive rate in FCM was 

proposed and its efficiency was evaluated by activation 

detection with FCM on 6 rest fMRI data. Fixing the false  
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Fig. 5. Comparison of the number of correctly detected active voxels 

(true positives) for HRF-based feature space compare to cross-

correlation coefficient feature space at different false alarm rates. 

 
Table 2. Number of subjects who showed activation in specific 

regions for different feature spaces. 

Detected 

Activation 

Region 

HRF-based 

Feature Space 

Cross Correlation 

Feature Space 

SMA 6 5 

SMC 6 6 

Cerebellum 6 6 

Putamen 2 0 

Thalamus 3 0 

Temporal 

Gyrus 

2 0 

 

 
 
Fig. 6. Activation regions detected by the proposed method, overlaid on 
the corresponding anatomical slices. Activation is detected in SMC, 

SMA, thalamus, cellebrum, putamen, and temporal gyrus at α =0.005. 



positive rate in activation detection using FCM, makes it 

possible to compare the FCM with other fMRI activation 

detection methods. One can also evaluate the performance 

of different FCM-based methods, such as using different 

feature spaces. An exact comparison between the above 

methods can not be made without considering the 

statistical significance of the results. The proposed 

method controls the rate of false positive occurrence 

without any assumption about the noise or activation 

pattern at the expense of computational complexity of 

randomization. Using this method, we compared two 

feature spaces: cross correlation feature space; and HRF-

based feature space. Our comparison using simulated and 

experimental data showed improved sensitivity of HRF-

based feature space over the cross correlation feature 

space. In the analysis of 6 finger-tapping fMRI data, 

activation was detected in sub-cortical regions using 

HRF-based feature space, where the cross-correlation 

feature space failed to detect themIllustrations and 
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