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ABSTRACT 
Automatic segmentation of brain tissues is crucial to many 

medical imaging applications. We use a multi-resolution analysis 

and a power transform to extend the well-known Gaussian 

mixture model expectation maximization based algorithm for 

segmentation of white matter, gray matter, and cerebrospinal 

fluid from T1-weighted magnetic resonance images (MRI) of the 

brain. Experimental results with near 4000 synthetic and real 

images are included. The results illustrate that the proposed 

method outperforms six existing methods. 

 

1. INTRODUCTION 

White Matter (WM), Gray Matter (GM), and 

Cerebrospinal Fluid (CSF) are three main tissues of human 

brain. With increasing number of brain images, automatic 

and accurate segmentation of WM, GM, and CSF are 

needed because manual segmentation is a time consuming 

and non-repeatable task.  Automatic segmentation of the 

brain soft tissues play a vital role in numerous biomedical 

imaging applications such as diagnosis, localization of 

pathology, study of anatomical structures, treatment 

planning, and computer assisted surgery [1]. Among the 

medical imaging modalities, magnetic resonance imaging 

(MRI) has the best soft tissue contrast, although it is not 

free of additive noise and other imaging artifacts [2]. 

In this paper, we utilize and extend a parametric 

model of the image histogram for image segmentation. A 

statistical model of the image histogram is in the form of a 

probability density function (pdf) of the pixel intensities. 

The Gaussian mixture model (GMM) is a well-known 

statistical model for density estimation due to its 

tractability and universal approximate capability. If we 

know the model parameters, we can determine the class 

that pixel intensity most likely belongs to it through a 

maximum a posteriori (MAP) procedure. The practical 

difficulty is that we do not know the model parameters a 

priori. Here, we face with the concept of missing data that 

the expectation maximization (EM) algorithm [3] is a 

suitable way to deal with it. The EM algorithm is an 

iterative procedure to find a maximum likelihood (ML) 

estimation of the unknown GMM parameters. 

In a GMM, we assume that the image histogram is 

composed of several independent normal distributions. In 

other words, the conterminous pixels are independent and 

identically distributed (i.i.d.), but this fundamental 

assumption causes error in segmentation results due to the 

presence of noise and other artifacts in MRI. In 

homogenous regions, the pixel intensities are correlated, 

although noise and artifacts change them to some extent. 

Without considering the spatial correlation between such 

pixels, we cannot segment them properly using the basic 

GMM. To improve the segmentation results, we propose a 

multiresolution wavelet based GMM segmentation 

algorithm to incorporate the spatial correlation between 

image pixels. Since in real world, not all the images have a 

normal shape histogram [4], we used a power transform to 

increase the normality. 

The rest of the paper is organized as follows. In 

Section 2, we review the basic theory. In Section 3, we 

propose our multiresolution algorithm. Experimental 

results are given in Section 4 and conclusions in Section 5.   

  

 

2. THEORY 

A mixture model with K >1 components is defined as 

follows: 

j

1

( ) ( ; )        y , 1
K

n

j k k j k

k

f y f y n 


       (1) 

where 

K

k=1

(0,1) ( 1,2,..., ),  1k kk K      are the 

mixing proportions. For the GMM, each component is a 

normal pdf: 

1

1
( ; )

(2 ) det( )

1
                 exp{ ( ) ( )}

2

k j k n

k

T

j k k j k

f y

y y




 





   

   (2) 



 2 

where ( , )k k k    is the parameter set of the k-th 

normal pdf. Let’s define the set of all model parameters 

as 1 2 1 2{ , ,..., , , ,..., }K K       . To find  , we 

use the EM algorithm. The basic EM algorithm has two 

steps: expectation step (E-step) and maximization step (M-

step). The E-step computes the expected log-likelihood 

function based on the current estimation of    
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( )t  is the   estimation after the t-th iteration 
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The M-step updates   using the data from the E-step and 

by maximizing the
( )( | )tQ   . This yields an ML 

estimation of the ( 1)t   
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These steps iteratively update the unknown parameters 

until reaches a stop condition. 

 

3. PROPOSED ALGORITHM 

The basic GMM suffers from lack of spatial correlation 

consideration. Ambroise, et al. [5] proposed to add a 

penalty term to the log-likelihood function that takes into 

account the spatial relationship between image pixels 

through a neighborhood. In this section, we propose a 

technique to alleviate the lack of spatial correlation 

consideration using a multi-resolution approach. Multi-

resolution analysis (MRA) tends to discover and take into 

account more image features by inspecting different 

resolutions of the original image. In addition to intra-scale, 

by MRA we can extend the pixel relationships into inter-

scale mode. Here we use this characteristic to improve the 

segmentation results of the basic GMM. In MRA, each 

pixel in a lower resolution is related to at least four pixels 

in a higher resolution. This forms a parent-child relation 

that can be used to avoid mistakenly assigning a pixel to a 

wrong class due to the change that noise or other artifacts 

cause in its intensity. This inter-scale relationship is 

justified as follows: when a parent pixel is assigned to a 

certain class say k, the child pixels are more likely to 

belong to the same class. To take advantages of this 

relationship, we propose to combine segmentation result 

of the original image with the one from a lower resolution 

one. This combination may produce error near the image 

edges because often the pixels near an edge belong to 

different tissues. Thus, we should avoid the combination 

near the edges. We use the Canny edge detector to find the 

edges in the original and approximate images. The Canny 

operator works in a multi-stage process. First, the image is 

smoothed by Gaussian convolution. Then, a simple 2-D 

first derivative operator (e.g., Roberts Cross) is applied to 

the smoothed image to highlight regions of the image with 

high values of the first derivative. Edges give rise to ridges 

in the gradient magnitude image. The algorithm then 

tracks along the top of these ridges and sets to zero all 

pixels that are not actually on the ridge top so as to give a 

thin line in the output, a process known as non-maximal 

suppression. The tracking process exhibits hysteresis 

controlled by two thresholds: Th1 and Th2 with Th1 > 

Th2. Tracking can only begin at a point on a ridge higher 

than Th1. Tracking then continues in both directions out 

from that point until the height of the ridge falls below 

Th2. This hysteresis helps to ensure that noisy edges are 

not broken up into multiple edge fragments.   

To produce a lower resolution image a good method 

is to use the 2D-discrete wavelet transform (2D-DWT). To 

perform this transform, we take first 1D-DWT from all the 

image rows and then from all the columns of the resultant 

image. By doing this, we obtain an image with the same 

size of the original image but composed of four portions 

(often called LL, LH, HL HH) and contain the different 

frequencies in horizontal and vertical directions. LL is also 

named as the approximate image and is a coarser version 

of the original image.  

Another modification we applied to GMM to increase 

its compatibility with real images is to use the Box-Cox 

transform [4]. This transforms non-normally distributed 

data to a set of data that has approximately normal 

distribution.  The Box-Cox transformation is a family of 

power transformations defined by 
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where   is the transformation parameter. After the 

transformation, 
( )

jy 
 is used in place of jy  in (3)-(6). To 

estimate the   in M-step the following equation is solved 

[4].  
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The proposed multiresolution segmentation algorithm 

(MRSA) can be summarized as follows: 

 

1. Take the 2D-DWT to obtain the approximate image. 

2. Apply the modified EM algorithm to original and 

approximate images to obtain the segmentations S1 

and S2, respectively. 

3. Apply the Canny edge detector to original and 

approximate images to obtain two binary masks that 

contain the edges of related images. 

4. Mask S1 and S2 with their related masks from Step 3 

to obtain final segmentation S where 0.6 1 0.4 2S S S  . 

The weighting coefficients are found empirically.  

 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of proposed method we 

performed two experiments on near 4000 synthetic and 

real images. First, we used the simulated images created 

by Brainweb simulator [6]. This site also provides the 

ground truth that enabled us to obtain a quantitative 

assessment of the performance of the algorithm. In the 

earlier version of the MRI simulator, partial volume effect 

was not appropriately modeled. The images that we used 

include different noise levels, RF non-uniformity and also 

partial volume effect. We considered the following cases: 
 

1. T1-weighted images with 1% to 9% noise levels and 

no RF non-uniformity. 

2. Same as 1 with intensity variations up to 40% for each 

tissue class (40% RF non-uniformity). 
 

All of the images have the same dimensions, 181*217 and 

each dataset has 181 slices. 

To evaluate performance of the proposed method, we 

computed the following quality measurements 
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where TP, FP, TN, and FN are abbreviations for true 

positive, false positive, true negative, and false negative, 

respectively. True positive is the set of pixels that both the 

MRSA algorithm and ground truth assign to the same 

class. False positive is the set of pixels that the MRSA 

assign to a class say k, but the ground truth do not assign. 

True negative is the set of pixels that both the MRSA and 

ground truth reject to be in class k and false negative is the 

set of pixels that the MRSA reject to be in class k, but 

ground truth does not. Fig. 1 shows these measurements 

for the second set of simulated images. Fig. 2 shows the 

samples of the simulated images and the segmentation 

results obtained by the proposed MRSA. 

In addition to simulated images, we used real images 

to evaluate our work. This is a difficult task, because most 

of the available databases contain only the images without 

a ground truth or gold standard but fortunately there is a 

database on the World Wide Web that contains real 

images with their ground truths. The 20 normal MR brain 

datasets and their manual segmentations are provided by 

the center for morphometric analysis at Massachusetts 

general hospital (MGH) and are available at IBSR [7]. All 

the images have the same dimensions, 256 256 , and each 

dataset has roughly 64 slices. The ground truth (manual 

segmentation) contains four classes, WM, GM, CSF, and 

others that presented by intensity levels 254, 192, 128, and 

0, respectively. Performance results from six automatic 

segmentation methods are also provided at this site. Using 

the results, it is possible to compare our methods to those 

reported on the site. In order to perform a meaningful 

comparison, we use the same performance index. This 

index is the Tanimoto similarity index  
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where ( )a bn k  is the number of pixels classified by both 

MRSA and ground truth as class k, and ( )a bn k denotes 

the number of pixels classified as class k by either the 

MRSA or ground truth. Fig. 3 shows the Tanimoto 

similarity index averaged on the 20 real image sets for the 

proposed MRSA and six automatic segmentation methods 

provided by [7]. Fig. 4 shows samples of the real images 

and the segmentation results of the proposed MRSA. The 

measurement quality indices (sensitivity, specificity, 

accuracy) and the Tanimoto similarity index show the 

superiority of the MRSA. Also, the segmentation results 

are visually similar to the manual segmentation or the 

ground truth. All the experiments are done with a P4-

1.7MHz PC using the MATLAB 6.5 environment. The 

average time to segment a 256 256  image is 12 seconds. 

  

5. CONCLUSION 

In this paper, we proposed a multiresolution algorithm 

with a modification in EM algorithm to alleviate the main 

drawbacks of the basic GMM, i.e., not considering spatial 

correlation and its incompatibility with the non-normally 

distributed data. The experimental results with near 4000 

synthetic and real images show high performance of the 

proposed algorithm and its superiority to the existing 

methods. Local convergence of the EM algorithm is 

another problem that we intend to deal with in our future 

work. 
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Figure 1. Sensitivity and Accuracy measurement for the second 

set of simulated images. 

 

 

 

 
Figure 2. Left column shows sample images from brainweb with 

9% noise and 40% RF non-uniformity. Right column shows the 

MRSA results. 

 

 

 
Figure 3. Comparison of average Tanimoto coefficients for the 

MRSA and six segmentation methods from IBSR [7]. 

 

 

 
Figure 4. Top row shows sample images from IBSR, middle row 

shows expert segmentation, and bottom row shows MRSA 

segmentation. Visual closeness between expert and MRSA 

segmentation is evident. 
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