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Abstract. Information theory based techniques for signal and image
processing are now considered as a viable alternative to other popular
techniques. This paper extends our pervious which was a new multispec-
tral filter based on mutual information maximization which mutually
restores multispectral images. For the sake of simplicity we consider only
two multispectral images, but the idea can be generalized to more images.
Since multispectral images contain analogous information about a scene,
as a rule thier mutual information is assumed to be maximal; but noise
and other independent artifacts decrease their mutual information. As an
extension to our pervious work we have used a generalized neighborhood
operation based on an alternative mutual information measure to in-
crease the mutual information between the two neighborhood windows,
sliding simultaneously on both images.The main feature of this gener-
alized neighborhood operation is that, it updates all pixels inside the
neighborhood window. This filter does not assume any specific relation
among the gray level intensities of images, and uses both inter-frame and
intra-frame information to suppress noise. Another important modifica-
tion in this work is addition a new term which filters images individually.
This leads to suppress correlated noise and artifacts. Application of the
proposed method to simulated images shows the outperformance of this
method compared with Perona-Malik method which has received much
attention in recent years because of its capability in both noise reduction
and edge enhancement.

1 Introduction

Information fusion of multispectral images is a very important issue in remote
sensing and medical image analysis. Fusion process submits the multispectral



images to some preprocessing steps. Registration (i.e. spatial realignment) of
images is the most important phase of preprocessing. As another preprocessing
step, images are passed through filters to reduce noise and increase performance
of fusion process.

Since filtration is of great importance in image processing, a huge number of
filtration methods have been proposed over years. These methods can usually
be considered as neighborhood operations on a single image [7]. That is to say
they are not devised to mutually restore multispectral images. On the other
hand,information theory based techniques for signal and image processing are
now considered as a viable alternative to other popular techniques.

In this paper, we extend our pervious work which was a new multispec-
tral filter based on Mutual Information (MI) maximization. By definition MI is
the amount of information that one variable conveys about the other[5]; there-
fore, since registered multispectral images are informative of one and the same
scene, they should have maximum possible MI, but noise and other independent
artifacts decrease MI between them. This filter is a generalized neighborhood
operation which increases the MI between two sliding windows of the same co-
ordinate.In contrast to our pervious work neighborhood operation, which up-
dates only the central pixel of an odd sized neighborhood window[1], the new
generalized neighborhood operation updates all pixels inside the neighborhood
window. This filter does not assume any specific relation among the gray level
intensities of images, and uses both inter-frame and intra-frame information to
suppress noise. Another important modification with respect to our pervious
work is adding a term which tries to restore each image individually. Since we
are looking to the images through a small neighborhood window we might have
accidently correlated noise in both windows, the filter that we had proposed
perviously amplifies these noises and artifacts. This was a main limitation in
our pervious filter. This work over comes the limitation by restoring each image
individually at a same time.

In section II, we briefly review a relatively new type of MI measure which
has been proposed by Xu et al [2] and enables us to estimate the MI of two
small data sets using a closed mathematical formula directly through data. In
section III, we describe the new generalized neighborhood operation which filters
multispectral images. Finally, in section IV, we present experimental results and
compare the new proposed filter with Perona-Malik filter which is widely used to
preprocess multispectral images before multispectral segmentation.[8] this filter
has received much attention in recent years because of its capability in both
noise reduction and edge enhancement.[7].

2 Alternative Mutual Information (MI) Measures

The MI maximization has been successfully used by Viola [3] to register multi-
spectral images. If multispectral images are not registered, their MI decreases.
This registration process finds a transform that maximizes the MI between im-
ages. As Viola has pointed out, estimating Shannon’s MI by pdfs is an inordi-



nately difficult task. So he estimates Shannon’s MI using sample mean method
which requires a large amount of data. This estimation method is not suitable to
estimate the MI between small data sets like two neighborhood windows where
we have a small amount of data and we need to know the influence of each
sample on the overall MI.

In this section we briefly review a relatively new alternative MI measure
proposed by Xu et al [2] which enables us to estimate the MI between two small
data sets directly through data samples using a closed mathematical formula.

MI measures the relationship between two variables; in other words, MI is
the measure of uncertainty removed from one variable when the other is given.
Following Shannon [4],[5] the MI between two RV’s X1 and X2 is defined as

Is(X1,X2) =∫ ∞

−∞

∫ ∞

−∞
fX1,X2

(x1, x2) log
fX1,X2

(x1,x2)

fX1
(x1)fX2

(x2)
dx1dx2 (1)

This measure could also be regarded as the Kullback-Lieber divergence be-
tween the joint pdf fX1,X2

(x1, x2)and the factorized marginal pdf’s fX1
(x1)fX2

(x2).The
Kullback-Lieber divergence between two pdfs f(x ) and g(x ) is defined as

DKL(f,g) =
∫ ∞

−∞
f(x) log

f(x)
g(x)

(2)

As pointed out by Kapur[6] there is no reason to restrict MI only to this dis-
tance measure. Another possible distance measure is based on Cauchy-Schwartz
inequality

DCS(f,g) = log
(
∫ ∞
−∞ f(x)2dx)(

∫ ∞
−∞ g(x)2dx)

(
∫ ∞
−∞ f(x)g(x)dx)2

(3)

Obviously, DCS(f, g) ≥ 0 with equality iff f(x)=g(x) almost everywhere. Thus
with DCS as a measure of distance, we may define Cauchy-Schwartz Quadratic
Mutual Information (CS-QMI) between two variables X1 and X2 as

ICS(X1,X2) = DCS(fX1,X2
(x1, x2), fX1

(x1)fX2
(x2)) (4)

Therefore, for the given data set {a(i) = (a1(i), a2(i))T |1 ≤ i ≤ N} of a random
variable X = (x1, x2) to estimate the CS-QMI of x1 and x2 we must estimate the
joint and the marginal pdf’s of x1 and x2. Parzen window method with Gaussian
kernel is used to estimate these pdfs.

fX1,X2
(x1, x2) =

1
N

N∑
i=1

G(x1 − a1(i), σ2)G(x2 − a2(i), σ2)



fX1
(x1) =

1
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G(x1 − a1(i), σ2) (5)
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Where G(x, σ2) is a Gaussian kernel. Using the following identity where a
and b are considered to be constants

∫ ∞

−∞
G(x − a, σ2)G(x − b, σ2)dx = G(a − b, 2σ2) (6)

we have

ICS(X1,X2) = log
VJ VM

V 2
C

(7)

where
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1
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N
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[ 1
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So we can easily estimate the ICS of two variables using these formulae. For
further study about this MI measure and some other generalized information
measures and their applications, interested reader is referred to [2].

3 Mutual Information Maximization using Generalized
Neighborhood Operations

Neighborhood operations are the central tools for low level image processing.
These operations are used to extract certain features from an image.That is why
the image resulting from a neighborhood operation is also called a feature im-
age. Proper combination of neighboring pixels can perform quite different image



processing tasks such as detection of simple local structures (i.e. edges, corners,
lines), motion determination, reconstruction of images taken with indirect imag-
ing techniques (tomography), and restoration [7].

The most important characteristic of a neighborhood operation is the size
of the neighborhood window. Although neighborhood operations are usually
defined on a single image [7],we can generalize neighborhood operations to N
images.

For the sake of simplicity, we consider the case N = 2 and select a 3 × 3
neighborhood window. We can consider these two multispectral images as a
single image whose pixels are 2 × 1 vectors. The vectors contain the gray level
of multispectral pixels with the same coordinates.

As shown in Fig.1, each neighborhood window is actually composed of two
neighborhood windows sliding simultaneously over both images. Since they ide-
ally contain the same information, their MI should be maximal; but noise causes
a decrease in MI. Increasing only the MI like this causes to amplifying the ac-
cidental correlated noise, therefore we increase the term which decreases the
grey level entropy in the window to restore each image individually at a same
time. The same notations as the pervious section are used to denote the gray
level values of the pixels inside the windows; therefore the MI between these two
windows can be calculated using (7).

Fig. 1. Two neighborhood windows with the same coordinates slide over multispec-
tral images A1 and A2, and the neighborhood operation increases MI between these
neighborhood windows

In conventional neighborhood operations, we try to estimate the true value of
a pixel from its surrounding pixels.In fact neighborhood operations make use of
pixel dependencies in a small region of image (neighborhood window), and since



the pixel dependencies are supposed to be isotropic, with regard to symmetry
the central pixel of an odd sized neighborhood window receives the result of
operation.But as we want to increase the MI of the gray level in a neighborhood
window there is no logical reason to restrict modification only to the central
pixel. We also

Therefore we intend to modify the pixels gray level in order to increase the
MI and decrease the gray level entropy. The gradient descent method can be used
to increase MI and decrease the gray level entropy; therefore, the derivative of
MI with respect to each pixel is calculated as follows

∂ICS

∂ak(p)
=

∂VJ

∂ak(p)
1
VJ

+
∂VM

∂ak(p)
1

VM
− 2

∂VC

∂ak(p)
1

VC
(9)

k = 1, 2

1 ≤ p ≤ 9

The new values for the pixels are calculated by adding the initial values
and (9) multiplied by a coefficient known as learning coefficient which plays an
important role in maximization process. Choosing values greater then 0.5 usually
causes the MI oscillate around its initial value. The second term in (9) is a term
which decreases the gray level entropy [2].We add this term in order to restore
each image independently.

ak,new(p) = ak,old(p) + γ
∂ICS

∂ak(p)
+ γ

1
VM

∂VM

∂ak(p)

By scanning the whole image using this neighborhood operation the MI be-
tween the feature images increases and, as a result, the two images become
mutually restored. Since we have used the gradient descent method to maximize
the MI and minimize the gray level entropy between windows, we should itera-
tively subject the resulting feature images to this filter; in other words this new
filter is an iterative filter.

4 Experimental Results

In this section, we compare the experimental results of the new proposed filter
with that of Perona-Malik filter which has received much attention in recent
years, and is widely used as a preprocessing in many multispectral segmentation
methods [7].

Perona-Malik’s filter achieves both noise reduction and edge enhancement
through use of an anisotropic diffusion equation which in essence acts as an
unstable inverse diffusion near edges and as a stable linear-heat-equation -like
diffusion in homogeneous regions.

This filter has been implemented using neighborhood operations. Considering
the first image A1 and its corresponding neighborhood window in Fig. 1 the
central pixel is updated according to following formula [9]
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Although Perona-Malik have used a 4-neighborhood system and have an-
nounced that an 8-neighborhood window does not significantly change results,
we implemented their filter with an 8-neighborhood window. In order to compare
these two methods, we have generated two simple simulated multispectral images
which represent the same scene as shown in Fig. 2-a and Fig. 2-b. To model the
noise generated by the imaging system, we have added a white Gaussian noise to
images Fig. 2-a and Fig. 2-b resulting in images Fig. 3-a and Fig. 3-b. The SNRs
of these degraded images are respectively 3.56 and 3.54. Fig. 4-a and Fig. 4-b
show the restored images using Perona-Malik method after 12 iterations. The
SNRs of these restored images are respectively 8.65 and 8.72. As seen in each
image, the low contrast edges have been severely diminished. Figures 5-a and
5-b show the results of the implementation of the proposed filter after the same
number of iterations. The SNRs of Fig. 5-a and Fig. 5-b are respectively 14.13
and 14.48.

Fig.2-a Fig.2-b

Fig. 2. Two simulated multispectral images representing the same scene.

It can be seen from the images that our method has preserved the edges
better than Perona-Malik method. Of course it should be noted that the images
are generated in such a way that the edge with low contrast in one image has
a high contrast in the other image. Since Perona-Malik method restores images
independently it fails to preserve these low contrast edges, but the proposed
method may preserve them since it uses both mutispectral images to restore
them simultaneously.



Fig3-a Fig3-b

Fig. 3. Multispectral images degraded by noise.

Fig4-a Fig4-b

Fig. 4. Mutispectral degraded images restored by Perona-Malik method.

5 Conclusion

We have proposed a new multispectral filter based on an alternative MI measure
using a generalized neighborhood operation. One of the main advantages of this
filter is using both inter and intra frame information to suppress noise. The other
advantage of this filter is that,there is no necessity to select an odd sized window
for this generalized neighborhood operation.This filter also restores each image
individually to over come correlated noises. Experimental results show that the
SNR of the restored images using the proposed method is higher than that of
the Perona-Malik method.
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