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Abstract 

 

Purpose 

We present a new method for brain parcellation based on a probabilistic model and anatomical 

and functional features that account for variability of the fMRI response in different brain 

regions. The goal of this procedure is to segregate the brain into spatially connected and 

functionally homogeneous components. It helps us achieve a new representation of the fMRI 

data, useful in region-based analysis of the data, especially in group analysis of the fMRI. 

 

Method 

To achieve this goal, the parcellation algorithm relies on the optimization of a compound 

criterion reflecting both the spatial and functional structures of the individual brains and hence 

the topology of the dataset. We employ unsupervised learning techniques to analyze fMRI data 

in an exploratory fashion. We use the most common spatial similarity measure, which favors the 

closeness in the coordinates system. The functional part of this criterion uses the parameters that 

characterize the functional properties of the voxels. These parameters are chosen as the β-

parameters estimated during a first-level GLM analysis of time series data via y=X β+e. Most 

methods consider raw fMRI time courses and use clustering or Independent Component Analysis 

(ICA) to estimate a decomposition of the data into a set of distinct time courses. In order to find 

functionally similar voxels, we use information from the first level analysis of the fMRI data. 

This effectively projects the original high-dimensional time courses to a low dimensional feature 

space, and then we perform a clustering in the new space. We have developed an automatic 

parcellation of the 3D cortex with an adjustable resolution. Our method operates on vectors that 

represent both the anatomical and functional properties of the voxels. We assume a Finite 

Mixture Model (FMM) for the distribution of the feature vectors where the voxels of each parcel 

follow a normal density. The algorithm relies on fitting FMM on the anatomical-functional data 

by using a self-annealing Expectation Maximization (EM)  algorithm. The preference of this 

approach to Gaussian Mixture Model (with standard EM algorithm) is an initialization strategy, 

which can be interpreted as a self-annealing algorithm. Moreover, the number of parcels, K, is an 

important issue. We employ Akaike Information Criterion (AIC) to fit the model to the data. The 

algorithm is run for each K, and the criteria evaluated. The K that achieves the minimum value is 

then selected as the number of parcels. The larger the number of parcels, the higher the degree of 



within-parcel homogeneity. However, there exists a trade-off between the within-parcel 

homogeneity and the signal-to-noise ratio (SNR).   

 

Results 

The algorithm is tested on synthetic functional data as well as real fMRI data. We have compared 

the results of our algorithm with previous parcellation algorithms such as K-means and Gaussian 

Mixture Model (GMM). We apply all of the above algorithms on synthetic functional data and 

calculate the confusion matrix and the accuracy (AC) parameter, which is the proportion of the 

total number of correct detection; it evaluates the performance of each classification. Table 1 

shows that our algorithm outperforms the others and has the highest accuracy (AC). 

 
Table 1- The performance of each algorithm demonstrated by calculating the accuracy (AC) parameter 

 

Method FMM- EM Algorithm 

self-annealing 

K-Means Gaussian Mixture 

Model (GMM) 

Accuracy (AC)  0.98 0.84 0.63 

 

 We also demonstrate the results of our method on a motor fMRI study. Here, we aim to employ 

our method to discover homogeneous and connected regions, parcels, in the brain in response to 

a motor task. In order to find the best model, we employ Akaike information criterion (AIC) then 

the optimal number of parcels K=10 is achieved. In Figure 1, we illustrate spatial maps of three 

parcels in the left and right motor cortices and the cerebellum. Note that these parcels are 

spatially connected regions, each having a distinct profile of response to the fMRI motor 

experiment. These regions are reported in prior hypothesis-based studies; however, our 

exploratory approach is able to define them. 



 
Figure 1. Spatial maps of the three parcels, discovered in the motor cortex and the cerebellum in an fMRI motor 

experiment, with the corresponding time courses. 
 

 

 

Conclusion 
   
In this paper, we presented a probabilistic model for unsupervised parcellation of the brain based 

on Finite Mixture Models. Applying this method to data from a motor experiment, we were able 

to find homogeneous and connected regions in the motor cortex and the cerebellum that have 

been previously found using hypothesis-driven methods. Simulation studies have shown that the 

parcellation results of our method are more accurate than those of the formerly developed 

methods. 

 

 

 
 


