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ABSTRACT 

Fuzzy C-means (FCM), in spite of its potent advantages in exploratory analyze of functional magnetic resonance 
imaging (fMRI), suffers from limitations such as a priori determination of number of clusters, unknown statistical 
significance for the results, and instability of the results when it is applied on raw fMRI time series. Choosing different 
number of clusters, or thresholding the membership degree at different levels, lead to considerably different activation 
maps. However, research work for finding a standard index to determine the number of clusters has not yet succeeded. 
Using randomization, we developed a method to control false positive rate in FCM, which gives a meaningful statistical 
significance to the results. Making use of this novel method and an ROC-based cluster validity measure, we determined 
the optimal number of clusters. In this study, we applied the FCM on a feature space that takes the variability of 
hemodynamic response function into account (HRF-based feature space). The proposed method found the accurate 
number of clusters in simulated fMRI data. In addition, the proposed method generated excellent results for 
experimental fMRI data and showed a good reproducibility for determining the number of clusters.  
 
Keywords: fMRI, fuzzy clustering, statistical test, randomization, cluster validity, Receiver Operating Characteristics 
(ROC) curve. 

 

1. INTRODUCTION 
 

Deoxygenated hemoglobin acts as an endogenous paramagnetic agent. Therefore, a reduction in the concentration of 
deoxy-hemoglobin increases the T2* weighted magnetic resonance signal. Based on this, functional magnetic resonance 
imaging (fMRI) measures changes in blood oxygenation and blood volume brought about by neural activity of the brain 
while a subject is performing some cognitive or motor task. 
 
The majority of fMRI practitioners currently use statistical techniques such as t-test or cross correlation to determine 
whether voxels of the brain show task related signal variation. In statistical methods, the resulting activation map is 
usually characterized with a significance level which determines the rate of false alarm occurrence (type I error). To 
compare such statistical methods, one should compare the results obtained with the same false positive rate. 
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The main limitation of these methods is their assumptions or models for the noise structure, the statistical behavior of 
the fMRI data, or activation procedure, which may not be true. These assumptions may bias the results obtained by such 
methods, especially when experimental conditions are complex or when the methods are applied to the data obtained 
from different subjects.7 
 
Beside these model-based statistical methods, some model-free methods such as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), cluster analysis, and self organizing maps have been used.8 In neuro-imaging, 
model-free analysis has been mostly carried out using clustering methods. The aim of clustering techniques is 
identifying regions with similar patterns of activation. They partition the brain voxels into some predefined number of 
clusters and one cluster is chosen as the active cluster. Different clustering methods, such as k-means, Kohonen 
clustering neural network, and hierarchical clustering have been used in this field, but the most popular method has been 
fuzzy C-means (FCM).2 The FCM generates the membership maps of the brain voxels to the clusters. After FCM 
convergence, the cluster with the most similar centroid to the stimulation pattern is selected as the active cluster and the 
membership degrees of the image voxels to this cluster (u) is compared with a threshold ua in order to detect activated 
voxels. 
 
Defining the correct number of clusters is one of the main issues in clustering of the brain voxels. Choosing different 
number of clusters leads to considerably different activation maps. To choose the optimal number of clusters, some 
cluster validity measures have been proposed (such as SCF cluster validity measure proposed by fadili et. al3) but 
intensive search for a standard index has not yet succeeded.13 One of the popular problems of these methods is 
instability of their results. This means that repeating the procedure may lead to different number of clusters. Thus, we 
will not have a reliable activation detection method without addressing this problem. Another limitation of the FCM and 
other clustering techniques is their inability to assign statistical significance to the results. The area under the Receiver 
Operating Characteristics (ROC) curve is commonly considered as a good criterion for characterizing the detection 
accuracy and has been widely used in different applications.17 However, it is not possible to use the area under the ROC 
curve as a cluster validity measure in fMRI activation detection because we can not control the false alarm rate in 
activation detection via fuzzy clustering. In addition, there is no way to measure true positive detections when applying 
the method to the experimental fMRI data. In this study, we have addressed these two problems in order to use the ROC 
curve as a reliable criterion for cluster validity in the analysis of the fMRI using fuzzy clustering. 
 
In order to limit the number of false positives in clustering of the fMRI data, Jarmasz et. al14 assumed a linear model for 
the time series of each cluster. Each time series is considered as the cluster center multiplied by a correlation coefficient 
plus a residual sequence. Then, the significance of the correlation coefficient is checked. Baumgartner et. al11 did the 
same significance test through resampling of the cluster centers in the time domain to avoid the model assumption. 
Aufferman et. al12 proposed a method using bootstrap and Fisher’s linear discriminant function, which relies on the 
multivariate normal assumption to assess the statistical significance associated with partitioning one cluster into two 
clusters or the inverse problem of combining two clusters into one cluster. Here, we propose a method based on 
randomization to evaluate the statistical significance of the activation voxels and to control the false detection rate in the 
fuzzy cluster analysis of fMRI. Making no specific assumption about the noise structure, the randomization procedure 
provides the distribution of “the membership degree to the active cluster (u)” under the null hypothesis (resting state 
condition). Using this probability density function, we can determine ua in order to control false positive rate. We also 
propose a method to determine the number of clusters, using the procedure we introduced for false positive control.  
 
Clustering of the raw time series is potentially able to separate cognitive or hemodynamic effects without precisely 
modeling them. However, due to high noise level of the experimental fMRI data, the results of clustering on the raw 
time series is often unsatisfactory and does not necessarily group data according to the similarity of their pattern of 
response to stimulation. An associated concern is that increasing the dimension of the feature space leads to practical 
difficulties such as curse of dimensionality.2,10,16 Goutte et. al10 considered a feature space based on the correlation 
between the temporal pattern of the stimulus and the fMRI time series. They showed that clustering this feature space 
yields noise reduction, improved performance, and robustness.2,10 Therefore, they assumed a fixed reference as the 
temporal pattern of activation to construct the feature space. However, the actual functional response may differ in 
various brain areas, different subjects, and under different conditions, even in a simple visual or motor task, and is far 
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more complicated than the usually assumed boxcar waveform.7 Here, we have used a feature subspace which takes into 
account this variability. 
 

2. DATA 
 
2.1. Simulated dataset 
For a realistic simulation of the fMRI data, computer generated “activation” time series were added to the measured 
time series of a single slice of a resting state experimental fMRI data in 116 voxels and with different contrasts (1%, 
1.5%, 2%, and 2.5%). The activation time series were obtained by convolving a stimulation pattern (a boxcar function 
with five periods of 60 seconds ON and 90 seconds OFF) with a Gamma function that models the hemodynamic 
response function (HRF). In order to model the variability of the HRF, the parameters of the Gamma function were 
varied randomly between different activated voxels. Fig. 1 shows the spatial location of the active voxels.  

 

 
 
Fig. 1. Spatial pattern of activity in the simulated data. Activations were added to the dataset in the regions shown. The activation 
contrasts for the columns (from left to right) are 1%, 1.5%, 2% and 2.5%, respectively. 

 
2.2. Experimental dataset 
Functional images were acquired from 6 normal volunteers using a single-shot GRE spiral scan sequence (TR=2 sec, 
TE=30 ms, FOV=220×220×96 mm3, matrix size=64×64×24) on a 3 Tesla GE MRI scanner (General Electric, 
Milwaukee, WI, USA). The subject performed a finger tapping task with both hands. The task consisted of 12 periods of 
36 seconds, where each period contained 18 seconds of finger tapping, followed by 18 seconds of rest. The first four 
volumes of the functional images were discarded and the remaining volumes were motion corrected using the AFNI 
software package.6 Linear drifts and mean components were then removed from each voxel time-series.  
 
 

3. METHODS 
 
Our proposed method consists of three steps. First, a set of features is extracted for each fMRI time series (see Secion 
3.1). In the second step, the FCM is applied on the proposed feature space for different number of clusters in order to 
select the optimal number of clusters (see Section 3.3). Finally, the FCM is applied with the optimal number of clusters. 
After the FCM convergence, the cluster with the most similar centroid to the stimulation pattern is selected as the active 
cluster. Then, a statistical membership threshold (ua) corresponding to the desired false alarm rate is computed using the 
method proposed in Section 3.2. Then, the membership degree of each voxel to the active cluster (u) is compared with 
threshold ua and voxels which have greater “membership degrees to the active cluster” than ua will be considered as 
active voxels. 
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3.1. Feature extraction 
Clustering raw fMRI time series may lead to stability problems and the risk of clustering on the noise rather than on the 
activation because of poor fMRI signal to noise ratio. Therefore, the feature space generated by the cross correlation of 
a fixed reference time pattern and the fMRI time series has been used as a proper feature space for cluster analysis of 
the fMRI.10 However, the hemodynamic response function (HRF) of the brain has been shown to vary significantly 
between different areas or subjects.5 The gamma hemodynamic response function, commonly used in statistical analysis 
of fMRI, includes two unknown shape parameters that are usually selected a priori by the analyst. Hossein-Zadeh et. al1 
proposed a new method that approximates the Gamma HRF over a wide range of parameters by a linear combination of 
three elementary functions (signals). These elementary signals were derived from singular value decomposition of a 
large number of signals generated by systematically varying the parameters of the gamma function. The elementary 
signals together accounted for 99% of the total variation in the data. Figure 2 shows these signals. Convolving these 
elementary signals with the stimulation pattern provides three basis functions (z1(t), z2(t), z3(t)) for the signal subspace. 
Therefore, each fMRI time series may be considered as Eq. (1) where e(t) is the error term considered as noise. 
 

 )()()()()( 332211 tetztztzty +++= ααα     (1) 

 
The unknown coefficients α1, α2, and α3 may be obtained for each voxel through least squares (LS) estimation. These 
coefficients along with a conventional cross correlation coefficient cc (the cross correlation between y(t) and the 
stimulation pattern) is proposed as a feature space for FCM clustering. We call this feature space HRF-based feature 
space. Considering the ability of the elementary functions to model the hemodynamic response variability, the 
coefficients α1, α2, and α3 are expected to generate an appropriate feature space for clustering. 
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Fig. 2. Convolving the above elementary signals with the stimulation pattern produces three basis functions (z1(t), z2(t), z3(t)).  
 
3.2. False alarm rate control 
After the FCM convergence, the cluster with the most similar centroid to the stimulation pattern is selected as the active 
cluster and the membership degrees of each voxels to this cluster (u) is compared with a threshold ua in order to detect 
activated voxels. This threshold strongly affects the significance of the results. However, it has been chosen a priori and 
heuristically by the investigators till now. By comparing u with ua for each voxel, one tests the null hypothesis H0: “no 
activation” and rejects it if u>ua. For controlling the type I error of this test at level α, the threshold ua must be found 
such that prob(u>ua | H0) = α. This requires the probability density function (pdf) fu(u|H0), which is difficult to derive 
theoretically (analytically). We propose a method based on randomization for finding this pdf. In this research, we use 
the resampling procedure introduced by Bullmore et. Al,9 which permutates the wavelet coefficients of the fMRI time 
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series in order to make surrogate data under the null hypothesis. The wavelet coefficients (obtained using Daubechies 
basis with 4 vanishing moments) of the fMRI time series are permutated at different levels of resolution (in 4 levels), 
and then an inverse wavelet transform is applied on them to generate various realizations of the data under the null 
hypothesis 
 
The FCM clustering is then applied on each set of randomized data while we hold the center of active cluster found 
before randomization unchanged, and then the membership degrees of all voxels in the active cluster will be computed. 
These values construct an empirical histogram which estimates the required pdf fu(u|H0). Using this histogram one finds 
a proper threshold corresponding to the desired α. Thresholding the active cluster membership map of the brain voxels 
with this threshold generates statistically meaningful results. 
 
3.3. Number of clusters 
Logically, choosing the optimal number of clusters in the FCM should lead to the most accurate detection of the fMRI 
activation. The area under the Receiver Operating Characteristics (ROC) curve is commonly considered as a good 
criterion for characterizing the detection accuracy. We are facing two problems in using ROC curves for the fMRI 
analysis with fuzzy clustering: first, we can not control the false alarm rate in activation detection via fuzzy clustering; 
second, there is no way to measure true positive detections when applying the method on the experimental fMRI data. 
The first problem has been addressed with the method described in the previous section. To overcome the second 
problem, we used the fact that truly activated voxels tend to be spatially clustered, while falsely activated voxels tend to 
be scattered so that one does not expect random spatial activations. These scattered voxels mainly appear as single 
voxels which are treated in many investigations as false detections and removed from the results.15 We used the number 
of detected single voxels (voxels with no activated neighbors) as a criterion for estimating the false positive detection 
for the experimental data. In fact, based on the spatial connectivity of the active voxels, we are looking for the number 
of clusters that produces the most compact activation regions with less single voxels. 
 
For a particular number of clusters, we do the following steps. 

1) We apply the method proposed in the previous section for various values of α in order to find their 
corresponding thresholds.  

2) Then, using the above thresholds, we find the corresponding active regions by thresholding the active cluster 
membership map obtained from fuzzy c-means clustering (FCM). 

3) Next, an estimate of the true positive detection is made by excluding the single voxels and counting the 
remaining voxels. We use these estimates in order to derive an estimate of β for different values of α. This 
produces an ROC curve for the specified cluster number. The area under this ROC curve in the interval [0 0.1] 
is used as the cluster validity measure. This interval is the common interval for α used in fMRI.  

4) By performing the steps 1 and 2, one can measure the cluster validity for different number of clusters and then 
select the optimal number which has the largest value of the cluster validity measure. 

 
 

4. RESULTS 
 
An estimate of the false alarm rate of an fMRI detection method can be made by applying the method to the resting state 
data. In order to provide the resting state data, time series of activated voxels were discarded from each of the 6 fMRI 
experimental data. After computing the cross-correlation map for each data, the active voxels were detected for false 
alarm rate of 0.1, and their time series were discarded from the data. This ensures us that the remaining voxels are in the 
resting state. The method explained in Section 3.2 was applied on each resting state data, and activated voxels were 
detected by assuming different false alarm rates. An estimate of the actual (occurred) false alarm rate is then made in 
each case by dividing the number of detected voxels to the number of voxels in the resting state data. 
 
Table 1 shows the numerical values of theses parameters for all of the 6 subjects. This table demonstrates the ability of 
our proposed method to control the false positive rate. In fact, using the pdf of u under the null hypothesis for choosing 
the threshold is the main foundation for the false positive control. One of the estimated pdf’s is shown in Fig. 3. 
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To evaluate the proposed method for defining the number of clusters, first we applied the method to the simulated 
dataset. Activation detection in the simulated data using this number of clusters had the minimum false alarm rate and 
the maximum sensitivity among all other number of clusters. The proposed method was also used to determine the 
optimal number of clusters for the experimental data and the results were compared to the results of the SCF cluster 
validity measure proposed by fadili et. al.3  

 
 

Fig. 3. Empirical histogram of the “membership degrees to the active cluster” under the null hypothesis, obtained by randomization 
in one of the experimental datasets. This histogram has been used as an estimate for fu(u|H0) in that subject. 

 
 

Table 1. Numerical values for Expected value of alpha versus observed false alarm rate for 6 subjects. 
 

Alpha 
(Expected) 

subject 1 
(Observed) 

subject 2 
(Observed) 

subject 3 
(Observed) 

subject 4 
(Observed) 

subject 5 
(Observed) 

subject 6 
(Observed) 

0.01 0.0102 0.0108 0.0102 0.0119 0.0111 0.0111 
0.02 0.0196 0.0197 0.0196 0.0222 0.0209 0.0213 
0.03 0.0307 0.0307 0.0299 0.0324 0.0298 0.0307 
0.04 0.041 0.0418 0.0392 0.0469 0.0444 0.0444 
0.05 0.0503 0.0512 0.0496 0.0503 0.0529 0.0518 
0.06 0.0597 0.0614 0.0597 0.064 0.0631 0.0631 
0.07 0.07 0.069 0.07 0.0694 0.0725 0.0725 
0.08 0.0802 0.0811 0.0785 0.0833 0.0811 0.0819 
0.09 0.0896 0.0904 0.0887 0.093 0.0904 0.0904 
0.1 0.0998 0.1024 0.099 0.1058 0.1038 0.1041 

 
 
Fig. 4 shows the ROC curves, corresponding to one of the experimental data, obtained using different number of 
clusters. This graph suggests N=6 as the optimal number of clusters.  For 5 out of 6 subjects, the two methods derived 
the same number of clusters; for the other subject, their proposed “number of clusters” was different by 1. To study the 
robustness of the results, we repeated the methods 10 times. By repeating the procedure, our method shows less 
sensitivity to the initial values of the FCM. Table 2 shows the number of clusters obtained by the proposed cluster 
validity measure and the SCF cluster validity measure in 10 repetitions. To evaluate the proposed method for activation 
detection, we applied it to the experimental dataset described in Section 2.2.  
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Table 2. Number of clusters obtained by the proposed cluster validity measure and the SCF cluster validity measure and their 
variance in 10 repetitions. 

 

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

8 8 7 6 6 8 

6 8 7 4 6 5 

8 6 5 6 9 8 

10 9 7 6 6 7 

8 8 9 6 5 7 

6 9 8 6 7 7 

8 8 7 8 6 4 

9 8 6 6 7 8 

8 7 7 6 5 6 
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Fig. 4. The ROC curves, for one of the experimental data, obtained by different number of clusters (N=2,4,6,7). 
 
Figure 5 shows activation regions detected by the proposed method, overlaid on the corresponding anatomical slices for 
one of subjects. Activation is detected in the sensorimotor cortex (SMC), supplementary motor area (SMA), Thalamus, 
Cellebrum, Globus Pallidus, and Transverse temporal gyrus at α =0.005. These results are consistent with the study 
performed by Moritz et. al.5 
 
 
 

 
 
Fig. 5. Activation regions detected by the proposed method, overlaid on the corresponding anatomical slices. Activation 
is detected in SMC, SMA, Thalamus, Cellebrum, Globus Pallidus, and Transverse Temporal Gyrus at α =0.005. 
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5. CONCLUSIONS 
 
The purpose of this paper was to present a new method for determination of the optimal number of clusters for fMRI 
activation detection. The proposed method is based on the Receiver Operating Characteristics (ROC) curve, which is a 
reliable and good criterion for characterizing the detection accuracy. Two issues in using ROC curves in fMRI data 
analysis with fuzzy clustering were addressed: first, controlling the false alarm rate in activation detection via fuzzy 
clustering; second, measuring true positive detections when applying the method to the experimental fMRI data. The 
proposed method was evaluated using simulated and experimental datasets and compared to the SCF cluster validity 
measure. The results showed the ability of the proposed method in determining the optimal number of clusters. The 
results of the proposed method were more reliable and robust compared to the SCF cluster validity measure. Finally, the 
proposed method for fMRI activation detection was evaluated using 6 finger tapping fMRI datasets. Finger-tapping 
paradigm regularly produces activation in the sensorimotor cortex (SMC), supplementary motor area (SMA), and 
cerebellum. Activity in the sensorimotor cortex produces transient neural activity in subcortical regions.5 Moritz et. al5 
reported activation detection in subcortical regions by changing the temporal duration of the reference function. In the 
experimental fMRI data, the proposed method revealed activation in the sub-cortical regions. Activation is detected in 
SMC, SMA, Thalamus, Cellebrum, Globus Pallidus, and Transverse Temporal Gyrus. 
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