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ABSTRACT 
 
Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the 
abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, 
intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and 
costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians 
determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG 
results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert 
from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for 
texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as 
well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet 
transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the 
hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular 
prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume 
feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and 
fuzzy c-means clustering algorithm. Experimental results show that the proposed texture features can correctly classify 
the hippocampi. 
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1.  INTRODUCTION 

Localization of the abnormal zones in the brain is an important task in the treatment of temporal lobe epilepsy. More 
than 20% of the epileptic patients undergo surgery when treatment with medication is ineffective. The conventional gold 
standard method (phase I) of evaluating an epileptic patient for surgical candidacy requires EEG exams to detect 
irritative zones, which is lengthy, painful, and costly. If the epileptic foci is not sufficiently localized in phase I, the 
patient will need to undergo phase II of the surgical evaluation, which involves implantation of electrodes intracranially 
and monitoring the patient for nearly two weeks. 
 
It has been shown that the determination of structural and volumetric asymmetries in the human brain from MR images 
provides critical data for the diagnosis of focal abnormality. The hippocampus is an important component of the human 
brain’s limbic system. The variations in volume and architecture of the hippocampus have been observed with some 
brain diseases such as schizophrenia, epilepsy, and Alzheimer.1,2 There have been some attempts to employ texture 
analysis of MR images for characterization of different diseases. In some applications, texture properties are used to 
discriminate the normal and abnormal tissues. In fact, there is a probability that we may be able to discriminate different 
tissues based on texture properties. For example, studies of intracranial tumors have demonstrated that MR image texture 
may be used to determine the tumor type.3 In this section we review some of the applications of texture analysis 
techniques to discriminate different tissues in MR images. 
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In our early work4 we used multiwavelet texture features to specify the candidate hippocampus for surgery in temporal 
lobe epilepsy (TLE). Herlidou et al. use texture analysis methods for the diagnosis of skeletal muscle dystrophy in MR 
images5 and evaluation of bone structure of the calcaneus of osteoporotic patients.6 The texture analysis was performed 
using four statistical methods: histogram, co-occurrence matrix, gradient matrix, and runlength matrix (references5,6) and 
one structural method: mathematical morphology (reference5) along with correspondence factorial analysis (CFA). 
Reuze et al.7 use four classes of textural features: fractal, co-occurrence, high order statistics and mathematical 
morphology, to detect muscle disease (myopathy) from MR images. They concluded that mathematical morphology 
results in the best classification rate. 
 
Freeborough and Fox8 use texture analysis for diagnosis and tracking of Alzheimer’s disease (AD) from MR images of 
the brain. Texture is quantified over all coronal slices of the brain region using co-occurrence matrices for angles of 0°, 
45°, 90°, and 135° and for 10 different displacement vectors. Duchesne et al.9 employ texture analysis to classify the 
temporal lobe epilepsy using MR image appearance. They use a volume of interest (VOI) around the hippocampus 
instead of hippocampus alone. For classification of the images, models of the intensity characteristics and shape 
deformations of the VOI are constructed and concatenated into an appearance model for the volume. For the VOI with n 
pixels, they consider an n-dimensional space and use the principal component analysis (PCA) to find the eigenvectors as 
orthonormal bases spanning n-dimensional allowable space. In this way they consider both gray-level intensities and 
shape deformations.  
 
Yu et al.10 try to detect epilepsy by texture analysis of MR brain images in the lithium-pilocarpine rat model. They use 
three texture parameters derived from co-occurrence matrix to characterize structural abnormalities. Bernasconi et al.11 
study the first-order and second-order texture features to assess structural integrity of mesial temporal lobe structures 
(hippocampus, amygdala, and entorhinal cortex). They do a similar texture analysis work for temporopolar cortex and 
white matter in TLE by incorporating volumetric measurements.12 Yu et al.13 use first-order and second-order texture 
features to detect abnormality of the hippocampus in temporal lobe epilepsy. Segovia-Martinez et al.14 use the method of 
gray-level dependence histograms (GLDH) and derive texture anisotropy features from MRI data that correlate with the 
result of Mini Mental State Examination (MMSE), which routinely helps to diagnosis Alzheimer’s disease. Mahmoud-
Ghoneim et al.15 propose a 3D texture analysis approach using the co-occurrence matrix for brain tumor characterization. 
Herlidou et al.16 employ first order, second order, and runlength matrix for different ROIs of the brain for 
characterization of healthy and pathologic human brain tissues. Bonilha et al. 17 use co-occurrence and runlength 
matrices to detect hippocampal abnormalities in patients with pathologically proven hippocampal sclerosis. 
 
In this paper, in addition to volumetry, we analyze the MRI signal (image gray levels) in each hippocampus to get a 
sensitive and specific means for determining the site of partial epilepsy of mesial temporal origin. We use the 3D T1-
weighted images of the brain to manually segment the hippocampus structure, and the corresponding 3D FLAIR images 
to get textural information of each hippocampus. We calculate the average energy features from 2D wavelet transform of 
each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus 
volume. After calculating the vector of features for a set of patients, we examine the ability of linear classifier and fuzzy 
c-means clustering algorithm to classify them into two groups of right and left abnormal hippocampi. The methods 
developed in this project are evaluated by the current gold standard of EEG phase II studies.  
 

2. METHODS 

2.1. Wavelet Transform 
Wavelet transform provides a spatial/frequency representation of a signal. Wavelet coefficients of a signal ( )tf  are the 

projections of the signal onto the multiresolution subspaces ( ){ }Ζ∈= ktV kjj  , span ,ϕ  and ( ){ }Ζ∈= ktW kjj  , span ,ψ ,

Zj ∈  where the basis functions ( )tkj ,ϕ  and ( )tkj,ψ  are constructed by dyadic dilations and translations of the scaling 

and wavelet functions ( )tϕ  and ( )tψ : 

( ) ( )ktt jj
kj −= 22 2/

, ϕϕ                                                             (1) 

( ) ( )ktt jj
kj −= 22 2/

, ψψ                                                             (2) 
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 The scaling and wavelet functions satisfy the dilation and wavelet equations: 
 

( ) ( ) ( )ntnht
n

−= ∑ 22 ϕϕ                                                                        (3) 

( ) ( ) ( )ntngt
n

−= ∑ 22 ϕψ                                                                       (4) 

where Zn ∈ . For any function ( ) ( )ℜ∈ 2Ltf  we have: 

( ) ( ) ( )∑∑∑
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Having the coefficients kjc ,  and kjd ,  at a specific level j we can calculate the coefficients at level j-1 using a filter bank 

as shown in Fig. 1. In this figure, two levels of decomposition are depicted. H and G are lowpass and highpass filters 
corresponding to the coefficients ( )nh  and ( )ng  respectively. The wavelet decomposition of a 2D signal can be achieved 

by applying the 1D wavelet decomposition along the rows and columns of the image separately.18 Fig. 2 shows the 
frequency subbands resulted from two levels of decomposition of an image. Wavelet transform of a 3D signal can be 
achieved by applying the 1D wavelet transform along all the three directions. The resulted frequency subbands for two 
levels of decomposition are shown in Fig. 3. 
 
 
 
 
 
 
 
 
 

Fig. 1. The filter bank for calculating the wavelet coefficients. 

 
 
 
 
 
 
 
 
 

Fig. 2. Frequency subbands produced by two levels of wavelet decomposition of an image. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Frequency subbands produced by two levels of wavelet decomposition of a 3D image. 
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2.2. Wavelet Features 
For each submatrix in Fig.2, we calculate the following features: 
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where ( )yxI ,  shows the submatrix elements and M and N are the dimensions of each submatrix and 

( )∑ ∑=
x y

yxI ,norm 22 . Similarly we can define the energy and entropy features for the 3D subbands in Fig. 3. 

 
2.3. Classification 
We employ two kinds of classifiers: linear classifier, which is supervised and can be easily implemented by a neural 
network, and fuzzy c-means classifier, which is unsupervised. Fig. 4 shows the corresponding neural network for linear 
classifier. As shown in this figure, this neural network has a two-value output, which shows either left or right 
hippocampus is abnormal. The weighted sum of the features plus a bias is the discriminant function. To determine how 
effectively the classes are separated, we use the EEG phase II results as the gold standard and compute the correct 
classification percentages by counting the misclassified hippocampi. 
 
 

 

 

 

 
 
 

Fig. 4. The linear classifier. 

 
 

3. PRACTICAL CONSIDERARTIONS 

In practice we face some problems for texture analysis of MR images. Some of these problems are as follows: 
 

1. The regions of interest (ROIs) in patients are not all from the same size, while in texture classification 
experiments authors usually use images of the same size (the extracted features may be dependent on the image 
size). This may make some texture classification methods inappropriate for MR images. 

2. The ROI does not always have a rectangular shape. In some texture classification techniques (like wavelet 
transform) we need a rectangular shape of the image. If we choose a rectangular area inside the ROI, we may 
lose some information outside this rectangle. If we inscribe the ROI in a rectangle, we need to assign some 
intensity values to the pixels outside the ROI but inside the rectangle. If we set all these points to zero, the 
produced sharp edges may significantly affect the extracted feature values. In this paper we fill the empty area 
using the proposed method in reference4. The hippocampus volume is inscribed in a rectangular prism and the 
empty area is filled by repeated dilation and averaging for all its 2D slices as depicted in Figs. 5 and 6. The 
hippocampus is characterized from the coronal slices of the brain. In order to inscribe the hippocampus volume 
in a rectangular prism, we can use the method of principal component analysis to find the principal axis of the 
hippocampus. Then by shifting and rotation we can inscribe the hippocampus in a rectangular prism, and find 
the pixel values of the new points by interpolation. In this way the empty area of the 3D image to be filled, will 
become minimum. 
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3. To deal with a 3D ROI, we need to develop algorithms for 3D texture analysis. We may make a number of 
slices of the 3D image and evaluate each slice separately. In this paper, we compare the 2D and 3D wavelet 
characterization of the hippocampi images. 

4. Textures in medical images do not appear as periodic and uniform patterns as in synthetic textures. Therefore 
not all the successful texture analysis techniques are suitable for MR images. 

5. In practice we need to first segment the image into the desired regions of interest. The result of texture 
characterization will be affected by the segmentation result. If the segmentation is not accurate and repeatable, 
the texture analysis result will not be reliable. In this paper, the images were segmented carefully by an expert. 
The sagittal and coronal views of a sample of manual segmentation are shown in Fig. 7. 

 
 
Like our previous work in reference4, an important practical issue in extracting intensity-based features is that, FLAIR 
images of different patients have different ranges of intensities, which may considerably affect the energy of different 
frequency bands of the wavelet transform. In order to reduce this effect, before computing the wavelet transform, we 
may divide the gray level values of each hippocampus by its mean or standard deviation. But, this method eliminates the 
relative intensity information of the right and left hippocampi, which may be an important feature; an abnormal 
hippocampus is expected to have a lower volume and a higher FLAIR intensity. An alternative method to normalize, 
while preserving the relative intensity information, is to divide the intensities of each hippocampus by the average 
intensity of the other hippocampus (i.e. right by left and vice versa). In this case, for each patient the average of intensity 
ratios will become less than one for the normal hippocampus, and more than one for the abnormal hippocampus (the 
abnormal one is the brighter one). In this paper, after computing the wavelet transform of each slice and calculating the 
predefined features (in 2D case), we average the features over all slices. As it is often the case, only one of the 
hippocampi is abnormal in each patient. To get one set of features for each patient we divide the resulting features of the 
right hippocampus (i.e. energy, entropy, and volume) by the resulting features of the left hippocampus and use these 
ratios as the final set of features for each patient. 
 
 

 
 
 
 
 
 
 
 

Fig. 5. Filling the empty area by repeated dilations and averaging. 
 
 
 
 
 

 
(a)                                                         (b) 

 
Fig. 6. Segmented hippocampus image, a) before filling the empty area, b) after filling the empty area. 
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Fig. 7.  Sagittal and coronal views of manual segmentation on T1-weighted MR images. 

 
 

4. EXPERIMENTAL RESULTS 

In the experiments, we used the FLAIR images of 20 patients, 10 with right abnormal and 10 with left abnormal 
hippocampi. Table 1 shows the correct classification percentages using linear classifier with different wavelet bases and 
feature sets. We used D6, D20 and Biorth2.4 wavelet bases with two levels of decomposition. Energy and entropy ratio 
features are used separately as well as together for classification. A combination of energy, entropy and volume ratio 
features is also reported. The features are calculated from the original coronal FLAIR images of the hippocampus as well 
as the interpolated slices after the hippocampus is rotated to be inscribed in a rectangular prism (noted by “original” and 
“rotated” respectively). The 2D slices of the hippocampus were used in both original and rotated cases for feature 
extraction using 2D wavelet decomposition. The 3D image of the rotated volume is also used for feature extraction using 
3D wavelet decomposition. As shown in this table, almost all the feature sets lead to 100% correct classification. This 
means the samples are linearly separable in the feature space. From the linear separability point of view, there is not 
significant difference between different methods of feature extraction in this table.  
 
Table 2 shows the correct classification percentages using fuzzy c-means clustering algorithm. As shown in this table, 
the combination of energy and entropy features does not improve the classification rate. According to our experiments, 
the volume ratio alone provides 90% correct classification using either linear classifier or fuzzy c-means clustering 
algorithm. But as shown in Table 2, adding volume ratio does not improve the classification rate. From these 
observations we can conclude that although the samples are linearly separable, the clusters are not far enough from each 
other to be classified perfectly by fuzzy c-means algorithm. Moreover, as shown in this table the features extracted from 
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the 2D slices of the rotated volume of hippocampus are generally more discriminative. However, the 3D wavelet 
decomposition does not provide more information compared with the other methods. 
 
Fig. 8 shows the cluster plots of different energy features of the D6 wavelet with three different methods of feature 
extraction mentioned earlier. The “R” and “L” symbols denote the patients with right and left abnormal hippocampi 
respectively. This figure shows the linear separability of the clusters. The 2D wavelet features in both original and 
rotated images provide higher separability compared with 3D wavelet features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. The correct classification percentages using linear classifier with different wavelet bases 
and feature sets. 

 
Features 

Wavelet 
Bases 

Slices 
energy entropy 

energy & 
entropy 

energy, 
entropy & 

volume 
original 2D 100 100 100 100 

2D 100 100 100 100 D6 
rotated 

3D 100 100 100 100 

original 2D 100 100 100 100 

2D 100 90 100 100 D20 
rotated 

3D 100 100 100 100 

original 2D 100 100 100 100 

2D 100 95 100 100 Boirth2.4 
rotated 

3D 100 100 100 100 

Table 2. The correct classification percentages using fuzzy c-manes clustering algorithm with 
different wavelet bases and feature sets. 

 
Features 

Wavelet 
Bases 

Slices 
energy entropy 

energy & 
entropy 

energy, 
entropy & 

volume 
original 2D 55 65 55 55 

2D 80 70 80 80 D6 
rotated 

3D 70 90 70 70 

original 2D 80 80 60 60 

2D 75 55 75 75 D20 
rotated 

3D 70 85 70 75 

original 2D 75 65 75 75 

2D 80 55 80 80 Boirth2.4 
rotated 

3D 70 80 70 75 
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(a) 

 
 

(b) 

 
(c) 

 
 

(d) 

 
 

(e) 

 
 

(f) 
 
Fig. 8. Cluster plots of energy features from different frequency bands using D6 wavelet. The “R” and “L” symbols 
respectively show the patients with right and left abnormal hippocampi (candidates for surgery on the corresponding 
hippocampus). (a) and (b) using 2D slices of the original images, (c) and (d) using 2D slices of the rotated volume, (e) and 
(f) using the 3D rotated hippocampus volume. 
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5. SUMMARY AND CONCLUSION 

In this work, we used FLAIR images of 20 patients for feature extraction. We have focused on epileptic patients with 
partial seizures of presumed mesial temporal origin. All patients had EEG records and most of them underwent resection 
of one of the hippocampi. The location of seizure onset as determined by the EEG methods and the postoperative 
outcomes were considered as the gold standard. Manual segmentation results from T1-weighted images were mapped to 
the FLAIR images. Then using the methods explained in Sections 2 and 3 we computed a set of features and then 
classified them into two groups using linear classifier and fuzzy c-means clustering algorithm. We used D6, D20 and 
Biorth2.4 bases with two levels of decomposition. The results demonstrate the extracted features are linearly separable 
and the energy features derived from the 2D wavelet transform provide higher separability compared with 3D wavelet 
decomposition of the hippocampus. 
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