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Abstract— This paper presents a new multiscale filter based
on a relatively new entropy manipulation method. The method
inspires using a generalized neighborhood operation, which
updates all the pixels inside the neighborhood window in such a
way that the spatial entropy inside the neighborhood window is
increased.

The interesting similarity between the new proposed filter and
Perona-Malik’s filter encourages considering it as a generaliza-
tion to the Perona-Malik equation.
The new proposed filter is compared with the Perona-Malik filter
and the results show that the new method outperforms Perona-
Malik method.

I. INTRODUCTION

Multiscale description of images has gained a lot of at-
tention in image processing community; therefore a prolific
research activity has been conducted in this area during the
two past decades. Despite the complicated concept of many
published ideas, the basic idea behind multiscale analysis is
quite simple; an image is simplified via iterative filtering. At
each scale (the number of iterations) a coarser version of input
image is generated. These filters are usually formulated as
the evolution of the initial image under a suitable linear or
nonlinear diffusion process.

These filters should satisfy a very important property ”any
feature at a coarse level of resolution is required to possess a
(not necessarily a unique) cause at a finer level of resolution,
although, the reverse needs not to be true.”

er:1 This property is called causality and can also be stated
from an information theoretic point of view ”at each scale we
only have loss of information and no new information should
be added to the images during evolution” i.e. At each scale
the entropy of the image is increased.[7]

The entropy of an image is obtained by assuming an image
as a realization of spatially distributed light quanta; as a result
the intensity of each point is the unnormalized probability of
light.[7]

p (x) =
I(x)∑

xεX I(x)
(1)

Then using Shannon-Wiener entropy measure we can esti-
mate the entropy of the image.

H (x) = −
∑
xεX

p (x) log p (x) (2)

At coarse resolution, the spatial smoothing is high and the
spatial probability distribution is close to being uniform, as a
result the spatial entropy (uncertainty) is high. Although the
mathematical infrastructure of information theory is believed
to be the best possible approach to deal with manipulation of
data[3], so far entropy maximization has only been used as a
constraint to restore images. It has been shown that restoration
under this constraint is equivalent to Maximum A Posterior
(MAP) estimation under the assumption that site intensities are
i.i.d random variables.[2] It worth noting that this method does
not produce scale-space images and is a parametric method in
the sense that the statistic’s of the noise should be modelled
properly.
This entropy measure has other applications in multiscale
image analysis. For example Sporring [7] applied the Shannon-
Wiener entropy in linear multiscale filters to perform scale
selection in textures, Wiekert [4] proved monotony of the
Shannon-Wiener entropy in linear and nonlinear multiscale
filters and used this measure for a uniform sampling of the
scale axis with respect to information content. Although this
probability perspective corresponds very nicely with the theory
of scale-space [7], it does not provide any idea to restore an
image directly using this measure.
Fortunately in recent years Xu et al have proposed a new
entropy estimator based on Renyi’s alternative entropy which
not only estimates the entropy directly through data but also
provides an easy method to manipulate data to increase or
decrease the entropy of the data set.

In this paper we propose a new multiscale filter that gener-
ates scale-space images by increasing the entropy of the image
at each scale using this entropy estimator. We believe that this
insight leads to development of a new paradigm in multiscale
image analysis. For example the new multispectral filter which



filters multispectral images mutually is a generalization of this
idea. This filter generates multispectral scale space images by
increasing the entropies of images individually while it in-
creases the mutual information between multispectral images.
The organization of this paper is as follows; the entropy
estimator will be briefly reviewed in section II. In section III
the principles of this new filter are described. The interesting
similarity between the new proposed filter and Perona-Malik
equation encourages considering it as a generalization to the
Perona-Malik equation. This section also illustrates a mechan-
ical model for this filter compares it with the mechanical
model of the Perona-Malik equation. Section IV contains
experimental results; the results show that the new method
outperforms Perona-Malik method.

II. QUADRATIC ENTROPY ESTIMATOR

In this section we briefly review a relatively new type of
entropy estimator recently proposed by Xu et al which not
only enables us to estimate the entropy of a realization set of
a RV directly, but also suggests how to manipulate these data
to increase or decrease the entropy of that set. This entropy
estimator is based on the integration of Parzen window pdf
estimator, coupled with Renyi’s quadratic entropy.

In 1960, Alfered Renyi, famous Hungarian mathemati-
cian, proposed a generalized entropy measure, called Renyi’s
entropy. Renyi’s entropy with order a is obtained by the
following equation.

HRα
=

1
1 − α

log(
N∑

k=1

pα
k ) (3)

α ≥ 0, α �= 1

Renyi’s entropy measure constitutes a family of entropy
measures which are monotonic decreasing functions of pa-
rameter α. The limit of this measure as α approaches unity is
Shannon’s entropy[5]

lim
α→1

HRα
= HS

Thus Shannon’s entropy can be regarded as one member
of Renyi’s entropy family. Further, as Kapur pointed out, this
measure is equivalent to Shannon’s measure with regards to
entropy minimization and maximization.[5]

Similar to the Boltzman-Shannon differential entropy∫ ∞
−∞ fY (y)logfY (y)dy continuous form of the (3) for contin-

uous random variable Y with pdf fY (y), is obtained by the
following equation

HRα
=

1
1 − α

log
∫ ∞

−∞
fY (y)αdy (4)

When α = 2, HR2 is called quadratic entropy, because of
the dependence of the entropy quantity on quadratic form of
probability distribution. This quadratic form

HRα
= − log

∫ ∞

−∞
fY (y)2dy (5)

gives us more convenience as we will see later.
Now suppose that we have a set of observations; A =

{ai|1 ≤ i ≤ N} whose elements are the realization of a
RV and we want to estimate its entropy. Regardless of the
method used to estimate the entropy measure, we have to
estimate the pdf of that RV first. Therefore, any pdf estimator
(parametric or non-parametric) can be used to achieve this
goal, but since the problem should be solved generally it’s
more reasonable to choose a nonparametric method which
doesn’t assume any model for the underlying pdf. Among
nonparametric methods Parzen window with Gaussian kernel
is one of the most popular methods because:
1-Parzen window estimator is consistent for estimating a
density from a wide class of densities.
2-The asymptotic rate of convergence for Parzen estimator is
optimal for smooth densities.
According to this method one may obtain the pdf through the
following formula

fX(x) =
1
N

N∑
i=1

G(x − ai, σ
2) (6)

Where G is a Gaussian kernel and δ is the standard
deviation. (6) means that each point is occupied by a kernel
function, and the whole density is the average of all kernel
functions.
Now if we notice the following identity where a and b are
constants

∫ ∞

−∞
G(x − a, σ2

1)G(x − b, σ2
2)dx = G(a − b, σ2

1 + σ2
2) (7)

we can simply calculate the integral of the Renyi’s quadratic
entropy (5)

V =
∫ ∞

−∞
fX(x)2dx (8)

=
∫ ∞

−∞
[
1
N

N∑
i=1

G(x − ai, σ
2)][

1
N

N∑
j=1

G(x − aj , σ
2)]dx

=
1

N2

N∑
i=1

N∑
j=1

G(ai − aj , 2 σ2)

Thus Renyi’s entropy can be easily calculated by
HR2(X|A) = − logV

These equations interestingly inspire a physical
interpretation.[1] Let us assume that we place physical
particles in the locations prescribed by ai and aj . The
integration of the product of two Gaussian kernels representing
some kind of mass density can be regarded as the interaction
between particles and ai, aj which results in the potential
energy G(ai − aj , 2σ2). Notice that it is always positive
and is inversely proportional to the square of the distance
between the particles. We can consider that a potential field
exists for each particle in the space where the field strength
is defined by the Gaussian kernel; i.e., an exponential decay



with the square of the distance. In the real world, physical
particles interact with the potential energy proportional to the
inverse of the distance between them, but here the potential
energy abides by a different law which in fact is determined
by the kernel in pdf estimation. V in (8) is the overall
potential energy including each pair of data particles. As
pointed out previously, these potential energies are related to
”information” and thus are called ”information potentials”
(IP). Accordingly, data samples will be called ”information
particles” (IPT).
Just like in mechanics, the derivative of the potential energy
is a force, in this case an information driven force that moves
the data samples in the space of the interactions to change
the distribution of the data and thus the entropy of the data.
Therefore,

∂

∂ai
G(ai − aj , 2 σ2) = − (ai − aj)

2 σ2
G(ai − aj , 2 σ2) (9)

can be regarded as the force that a particle in the position of
sample aj impinges upon ai and will be called an information
force[1]. If all the data samples are free to move in a certain
region of the space, then the information forces between each
pair of samples will drive all the samples to a state with
minimum information potential. If we add all the contributions
of the information forces from the ensemble of samples on
ai we have the overall effect of the information potential on
sample ai; i.e.

∂V

∂ai
=

−1
σ2N2

G(ai − aj , 2σ2)(ai − aj) (10)

The Information force is the realization of the interaction
among ”information particles.” The entropy will change to-
wards the direction (for each information particle) of the
information force. Accordingly, Entropy maximization or min-
imization could be implemented in a simple and effective way.

III. GENERALIZED PERONA-MALIK FILTER

Neighborhood operations are the central tools for low level
image processing. Proper combination of neighboring pixels
can perform quite different image processing tasks such as
detection of simple local structures (i.e. edges, corners, and
lines), motion determination, reconstruction of images taken
with indirect imaging techniques (tomography), and restora-
tion. A neighborhood operation takes the values of pixels
in the neighborhood of a point, performs some operations
with them, and writes the results back on to the point.[6] A
3 × 3 neighborhood window as shown in Fig.1 is selected
to implement the new filter. The entropy of the gray level
intensities inside the neighborhood window, according to (8)
can be calculated through the following formula

HR2(I) =
1
92

9∑
i=1

9∑
j=1

G(ai − aj , 2σ2) (11)

It should be noted that when all the pixels inside the
neighborhood window have the same gray level intensities, the

Fig. 1. A common 3 × 3 neighborhood window, which is selected to
implement new generalized filter.

entropy of gray level intensity is minimized (equal to zero),
but the entropy of the image as we defined in (2) is maximized.
According to the causality principle,in scale-space images the
entropy of image should be increased at each iteration; thus the
entropy of the gray level intensities inside the neighborhood
window should be decreased.

Since in neighborhood operations the central pixel receives
the result of operation, the a(5) should be modified in such
a way that (11) is decreased. The modification of the central
pixel could be obtained using the gradient descent method
which is appropriate for this purpose

at+1(5) = at(5) + γ

∑9
j=1 G(ai − aj , 2σ2)(ai − aj)∑9

i=1

∑9
j=1 G(ai − aj , 2σ2)

(12)

Where t is the index of scale and γ is a constant coefficient
known as learning coefficient and plays an important role in
stability of the filter. This equation resembles Perona-Malik
equation for an 8 neighborhood window which is

at+1(5) = at(5) + γ

∑9
j=1 G(ai − aj , 2σ2)(ai − aj)∑9

j=1,j �=5 G(ai − aj , 2σ2)
(13)

As one can see, only the denominator of (13) and (12) differ
slightly. In fact, by proper choosing of learning coefficient
and the same variance parameter, these two filters can restore
images with approximately same PSNR improvement.

An important question arises here. Why should only the
central pixel in the neighborhood window be modified? There
is a classical answer for this question ”Neighborhood op-
erations are designed to estimate the true value of a pixel
from its surrounding pixels. In fact neighborhood operations
make use of pixel dependencies in a small region of image
(neighborhood window), and since the pixel dependencies are
supposed to be isotropic, with regard to symmetry the central
pixel of an odd sized neighborhood window receives the result
of operation.[6] But as we want to decrease the entropy of
the gray level intensity in a neighborhood window there is no
logical reason to restrict modification only to the central pixel.
In fact this restriction causes two major drawbacks that could



be understood better using the mechanical model described in
the pervious section.
If we consider the gray level intensities in a neighborhood
window as information particles, there is an interaction force
(like gravity) among these particles, which according to the
sign of force, moves these particles to one of the two stable
states which are the minimum and maximum entropy state.
This is just like the Spring-Mass model proposed for Perona-
Malik equation [?],where the movement of the particles are
made non-conservative by stopping them after a small period
of time �t and re-starting movement with zero velocity in
the next iteration. Now if we only permit the IPT in the
central pixel to move, the information forces from the IPTs
in the neighborhood window move that IPT in the direction
of decreasing entropy until the net force on it becomes zero.
There are two major drawbacks with this. First when the
central pixel reaches to the equilibrium point further decrease
in entropy of the neighborhood window is not possible, clearly
this point is not the global minimum of the entropy because
the net forces on the other neighborhood pixels are not zero
and the system is in equilibrium because these particles are
fixed in their positions. The second draw back is even more
serious, suppose that we want to decrease the entropy of the
neighborhood window with a determined value, clearly the
position of the central pixel when all other pixels are fixed
is not equal with its position when all pixels are free to
move. Which means that the estimated value for the central
pixel is not correct. . These problems can also be investigated
using diffusion process concept. It is well known that Perona-
Malik’s filter simulates a discretized diffusion process in a
neighborhood window, when we permit only the central pixel
to vary; it means that in a neighborhood window the intensity
diffused from the central pixel to the neighboring pixels leaves
the central pixel, but does not reach to the neighboring pixels
or when some intensity is diffused from neighboring pixels
the intensity in central pixel increases but the neighboring
pixels do not lose that amount of intensity.Of course since the
neighborhood window rasters the whole image these filters
are mean preserving filters, but this is why Perona-Malik
filters with adaptive threshold value are not mean preserving
filters. To overcome these drawbacks,we propose to make
all the pixels inside the neighborhood window free to move.
Considering the neighborhood window in Fig1, the new value
for each pixel is obtained through the following equation

at+1(k) = at(k) + γ

∑9
j=1 G(ai − aj , 2σ2)(ai − aj)∑9

i=1

∑9
j=1 G(ai − aj , 2σ2)

(14)

1 ≤ k ≤ 9

There is another advantage over the conventional neighbor-
hood operations. The window needs not to be an odd sized one
any more. It worth noting that like before, the image pixels
are rastered one by one.

IV. EXPERIMENTAL RESULTS

For experimental evaluation of the new proposed filter with
Perona-Malik’s filter we have used a 256 × 256 Lena image
Fig.2 This image is degraded by a white Gaussian noise to
model the noise of the imaging system Fig.3; as a result the
Peak Signal to Noise Ration (PSNR) of the image is reduced
to 25db . The PSNR which is used to measure the quality of
image, is calculated as

PSNR =
127 × 127

1
256×256

∑
i

∑
j(I(i, j) − U(i, j)2)

(15)

where I(i,j) and U(i,j) are the original image and noisy
image samples, respectively. We have used a threshold value
equal to 25 for both filters. Fig.4 shows the restored Lena
image produced by using the Perona-Malik’s filter after 6
iterations and Fig.5 shows the restored Lena image using the
new proposed filter after the same number of iterations. It
can be seen that the edges and details of images are preserved
better in the Fig.5. PSNR of Figs 4 and 5 are 30.52 and 31.85,
respectively. Fig.6 shows the curves of PSNR improvement
versus iteration number. It is evident from this figure that
the conventional method cannot reach to the improvement
of the new proposed filter even if we increase the number
of iterations. Fig.7 shows the restored Lena image using an
unusual 2× 2 neighborhood window.The PSNR of this image
is 30.1 after 6 iterations.

Fig. 2. A 256 × 256 original Lena image.

Fig. 3. Original Lena image degraded by white gaussian additive noise.



Fig. 4. Degraded image restored by Perona-Malik method.PSNR=30.52

Fig. 5. Degraded image restored by new proposed filter .PSNR=31.85

V. CONCLUSION

We have proposed a new multiscale filter based on an
alternative entropy measure. This filter uses a generalized
neighborhood operation,which updates all pixels inside the
neighborhood window. Since the new proposed filter is very
similar to Perona-Malik filter, it can be considered as a gener-
alization to this filter. One of the advantages of the generalized
neighborhood operations is that,there is no necessity any more
to use only odd sized windows.
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