
 
Abstract- Analytical methods for solving adiabatic 
equations with non-uniform permeability and real 
Arterial Input Function (AIF) are complicated. We 
consider crossing of contrast agent through the 
capillary and BBB as intrinsically statistical processes. 
Therefore, it is simulated by a stochastic method 
(Monte Carlo Method). In our model, capillary is 
divided into multiple sections as in Patlak model and 
contrast agent moves from one section to other sections. 
For capillary input, AIF is made by Monte Carlo 
Method from real data. Without solving an equation, 
we derive the concentration of contrast agent as a 
function of time and distance in the capillary for 
normal (not permeable due to BBB) and abnormal 
capillary with uniform and non-uniform permeability. 
Keywords - Blood Brain Barrier (BBB), Arterial Input 
Function, Contrast agent, Permeability, Monte Carlo 
Method. 
 
I. INTRODUCTION 
 
Measurement of physiological parameters such as 
permeability of blood brain barrier (BBB) is an important 
area of research in MRI. Tissue homogeneity model 
describes BBB in two compartments: intravascular and 
extravascular, which are separated by permeable BBB 
[1,2,3]. The quantity of contrast agent inside and outside of 
capillary (intravascular and extravascular space) depend on 
permeability of BBB. The amount of enhancement of a 
region of tissue above normal tissue will be estimated by 
[amount of contrast concentration in abnormal tissue]-
[amount of contrast concentration in normal tissue]. It is 
this enhancement of the MRI image near an abnormal 
tissue that clinicians will use to identify and estimate the 
extent of the abnormal tissue. To investigate the effect of 
exchange during bolus injection of a contrast agent, it is 
necessary to model the concentration of contrast agent 
within the capillary of BBB both as a function of time and 
position [2]. 
 
II. METHODOLOGY 
 
One of the important models describing BBB is tissue 
homogeneity model (TH). TH model describes BBB in 
two compartments: intravascular space (IVS) and 
extravascular space (EVS), which are separated by 
permeable BBB (Fig. 1). It is further assumed (consistent 
with the literature) that there is rapid mixing in the EVS, 
implying that this concentration is a function of time only, 
and that it is the exchange across the capillary membrane, 
the EVS-IVS boundary, that dominates the exchange 
calculation [2]. From conversation of the mass of tracer in 
intravascular and extravascular spaces, the adiabatic 
equations (1) is derived [4]. 
 

 
 

Fig. 1. Tissue homogeneity model, IVS (Intravascular), EVS 
(Extravascular), PS (permeable surface). 
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Where x and t are position and time, Civ(x,t) and Cev (t) are 
the concentrations in mMole of tracer in the intravascular 
space, and the extravascular space, L is the length of the 
capillary in cm, F is the flow in ml/min/g, aiv  represents 
the cross-sectional area of each compartment in cm2/g, and 
PS is the permeability surface area products in ml/min/g. 
The quantity of contrast agent or indicator inside and 
outside of capillary depends on permeability of BBB. We 
suppose that the capillary bed is composed of identical 
tube, length, L, total surface area, S, and constant flow 
rate. There are both uniform and non-uniform 
permeability, P, in the tube. The flow of the contrast agent 
through the capillary and BBB are considered as statistical 
phenomenon. Therefore, they are simulated by Monte 
Carlo method. In the model, capillary is divided to 
different sections similar to Patlak model and contrast 
agent moves from one section to other ones. 
 

 
 

Fig. 2. Patlak Model 
 
The probabilities of particle motion are calculated by the 
values of permeability, flow of blood, and equilibrium 
partition coefficient according to adiabatic equations (1): 
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where Prc, Poc, Pic are probabilities of tracer motion a) in 
the intravascular space, b) outside of the intravascular 
space, and c) into the intravascular space, respectively. 
L is the length of the capillary in cm, F is the flow in 
ml/min/g, aiv represents the cross-sectional area of each 
compartment in cm2/g, and PS is the permeability surface 
area products in ml/min/g. 
In other researches, AIF is modeled in a form of gamma, 
exponential or impulse function. In our model, the input 
function is generated by Monte Carlo method according to 
real data (Fig. 3) [5]. AIF was made by two gamma and a 
uniform functions. AIF function is introduced as time 
dependent input of the capillary.  
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Fig. 3. AIF function results from simulation. 
 
For reconstructing AIF function by Monte Carlo Method 
[6], we generated random variables from three 
distributions: 
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In general, for α>1, Γ(t,α) is expressed as: 
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The distribution function is: 
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If random variables or r are generated between (0-1), 
P-1(r) has Gamma distribution.  

Uniform function is expressed as: 
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And inverted function is obtained as: 
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Similar to pervious section, we have a uniform distribution 
for random variable, r. 

 
 

Fig.4. Abnormal BBB results from simulation 
 

III. RESULTS 
 

In this research, the concentration of contrast agent is 
derived as a function of time and distance in capillary for 
normal (not permeable due to BBB) and abnormal 
capillary for both uniform (Fig. 4) and non-uniform 
permeability. Simulated contrast agent in intravascular 
space for abnormal BBB is shown as a function of time 
and position along the capillary in Fig. 4. Note that AIF is 
reproduced at x=0 and is changed in the distance of the 
capillary, the concentration at time t=0 is zero, the 
concentration increases to a maximum value then 
decreases more slowly as fresh blood enters into the 
capillary and washes out the contrast agent from the 
extravascular space.  
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