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Abstract- The aim of this study is to assess the functional 
connectivity from resting state functional magnetic resonance 
imaging (fMRI) data. Spectral clustering algorithm was 
applied to the realistic and real fMRI data acquired from a 
resting healthy subject to find functionally connected brain 
regions. In order to make computation of the spectral 
decompositions of the entire brain volume feasible, the 
similarity matrix has been sparsified with the t-nearest-
neighbor approach. Realistic data were created to investigate 
the performance of the proposed algorithm and comparing it 
to the recently proposed spectral clustering algorithm with the 
Nystrom approximation and also with some well-known 
algorithms such as the Cross Correlation Analysis (CCA) and 
the spatial Independent Component Analysis (sICA). To 
enhance the performance of the methods, a variety of data pre 
and post processing steps, including data normalization, outlier 
removal, dimensionality reduction by using wavelet coefficients, 
estimation of number of clusters and optimal number of 
independent components (ICs). Results demonstrate the 
applicability of the proposed algorithm for functional 
connectivity analysis.  

I. INTRODUCTION 

Functional neuroimaging has become an important 
neuroscientific tool for assessing connectivity and 
interactions of distant areas of the brain. Scientists have 
defined two types of connectivity: effective connectivity 
which indicates the influence that a neural system exerts 
over another and functional connectivity defined as the 
temporal correlations between spatially remote 
neurophysiological events [1]. 

Various modalities like electroencephalographic (EEG), 
magnetoencephalographic (MEG), positron emission 
tomography (PET) and functional resonance imaging (fMRI) 
may be used to determine regional interactions in the brain. 
Among them, fMRI as a non-invasive imaging modality 
with high spatial resolution has drawn considerable attention. 
The fMRI data in the resting state (while subjects perform 
no task) is widely used for exploring functional connectivity. 
During the resting state, there are intrinsic hemodynamic 
fluctuations in the blood oxygen level dependent (BOLD) 
signal. The resting state fMRI is used to analyze the BOLD 
signal using the similarity of fluctuations in different voxels. 
Functional connectivity is evaluated by cross correlating 
temporal BOLD signals between brain regions [2]. Usually 
a region of interest (ROI) is selected in the brain and 
correlations between the averaged time course from voxels 
of this region (which is used as a reference signal) and all 

other voxels are computed. These kinds of approaches are 
called model-based methods, because they are based on 
prior knowledge. Alternatives to them are data-driven 
methods that need no predefined region [3]. 

Independent Component Analysis (ICA) is a widely used 
data-driven method that needs no prior knowledge about the 
spatial or temporal patterns of source signals. As a result, 
ICA is an appropriate method for studying the resting state 
data, which is increasingly being used. Although ICA was 
introduced into fMRI data processing in 1998 [4], its first 
application for analyzing resting state fMRI data was 
reported in 2003 [5]. A problem with ICA is the choice of 
meaningful decomposed components. 

Another class of data-driven methods that have become 
popular are clustering methods. Among the methods in this 
class are K-means clustering, fuzzy c-means clustering, and 
hierarchical clustering. Like almost any other clustering 
method, the K-means results depend on the assignment of 
the initial clusters. Moreover, the number of clusters must 
be specified beforehand [6]. In 1998, Golay et al. employed 
FCM clustering with the inverse of the similarity between 
time series as a distance measure for functional connectivity 
detection [7]. A limitation of using FCM is the need to 
choose the number of clusters in advance. Besides the 
structured noises can contaminate the proposed distance 
metrics and degrade the performance. In order to overcome 
these problems, Cordes et al applied a hierarchical 
clustering algorithm based on single linkage (nearest 
neighbour method) to measure the connectivity in the fMRI 
resting state data [8]. In this method, each voxel is 
considered as a cluster at the beginning and close clusters 
are merged to create bigger clusters through the linkage 
function in the next stages. The algorithm chooses the 
number of clusters by selecting a linkage inconsistency 
threshold and partitions the data. However, the resulting 
partitions are not as homogeneous as with the K-means. In 
addition, because of the increasing constraints on the 
partition at each stage, partitioning the data to a small 
number of clusters can result in partitions considerably 
worse than partitions obtained with the K-means [6]. In 
2008, using the K-means clustering and short time 
frequency analysis, Mezer et al. studied the spatial signal 
characteristics of the resting state fMRI time series [9]. 

As well, all of the mentioned clustering methods assume 
that data clusters conform to certain shapes, while on the 
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Figure 1.  Slice number 26: (a) T1-weigthed anatomical image, (b) 

Scoring map. 

contrary this is not a valid assumption for the fMRI data. A 
successful clustering method that does not make any 
assumption on the form of the clusters, is spectral clustering 
[10] which can solve all of the above problems. This method 
relies on the eigen decomposition of the similarity matrix 
between pairs of voxels. 

Spectral clustering is introduced into the fMRI analysis in 
2005 by Lin et al. for activation detection [11]. In 2009, 
Venkataraman et al. applied it for analyzing the resting state 
fMRI data [12]. Due to the large number of voxels, they 
used the Nystrom approximation to estimate the eigenvalues 
and eigenvectors. 

In this paper, we apply spectral clustering with the 
strategy of sparsifying the similarity matrix via keeping 
nearest neighbours. So, minor connections between data 
points are neglected and some noisy/inaccurate similarity 
values might be discarded. We have applied the method to 
the realistic and experimental fMRI. Realistic data were 
used to investigate the influence of the noise level (contrast 
to noise ratio) on the performances of the algorithm. Also, 
variety of data pre and post processing steps were employed. 
The proposed approach was compared to the recently 
developed spectral clustering algorithm based on nystrom 
approximation [12], Cross Correlation Analysis and two 
commonly used ICA algorithm, the infomax [13] and the 
fixed-point[14]. To the best of our knowledge, this is one of 
the first of its kind to use the t-nearest neighbor approach 
[15] for the analysis of the resting state fMRI. Besides, 
comparing the results of spectral clustering and ICA 
approaches, on the resting state brain data, have not been 
performed in the past. 

II. MATERIALS 

A. Experimental Data 
A dataset provided by the Pittsburgh Brain Competition 

(PBC) (http://www.braincompetition.org) was used in this 
study. Data was collected on a subject (male, 27 years) on a 
Siemens 3T TIM Trio with 32 channel head coil at the 
Magnetic Resonance Research Center of the University of 
Pittsburgh Medical Center in compliance with their Internal 
Review Board regulations. Each acquisition consisted of 50 
contiguous slices (96×96×50 2.4mm × 2.4mm × 2.4mm 
voxels). The repetition time (TR) was set arbitrarily to 2s. 
At whole 300 acquisitions were made from the subject. 

We performed realignment using SPM8 
(http://www.fil.ion.bpmf.ac.uk/spm/). The data linear trend 
was removed and temporally filtered using a bandpass filter 
with 0.01Hz and 0.1Hz cut-offs using RESTing-state fMRI 
data analysis toolkit (http://resting-fmri.sourceforge.net). 

The brain scoring was also prepared by the 2009 
Organization of Human Brain Mapping. Each scoring map 
contains one functional region that was computed from 
fMRI image data and was the target region to be found 
(shown with “white” voxels in Figure 1) and a number of 
voxels very near to this region that were considered too 
close to call for inclusion in the functional region (“gray” 
voxels). Participants in the competition would be neither 
rewarded nor penalized for including these voxels in a 
submitted region. 

 

B. Realistic Data 
For creating the realistic data we have used the 

experimental data which was described in previous 
subsection. After realigning the data set using SPM8, the 
time course of each voxel was randomized to remove the 
intrinsic connectivity in the whole dataset. The 19 non-
overlapping functionally connected regions were chose from 
the brain scoring maps provided from the PBC 2009. For 
each region a connectivity signal was created and added to 
the time courses of voxels of each region. The amplitude of 
the created signal was chose to be 4% of the mean 
amplitude of the time course of the selected voxel. Then the 
data linear trend was removed and temporally filtered using 
a bandpass filter with 0.01Hz and 0.1Hz cut-offs using 
RESTing-state fMRI data analysis toolkit. 

The synthetic connectivity signals were generated as 
below. A random superposition of sines and cosines 
oscillating at various frequencies can be used to represent 
any stationary time-series [16]. Therefore, a linear 
combination of sine waveforms of different frequencies and 
phases (weights of each generated from a normal 
distribution) were used to create each regional time-series. 
In order to produce a temporally smoothed BOLD time-
series, the regional time-series were then convolved with a 
hemodynamic response function (double gamma). Synthetic 
connectivity between regional time-series was achieved by 
linking the weights of sine waveforms at certain frequencies 
and phases [17]. 

C. Preprocessings 
In order to enhance the performance, a variety of data 

preprocessing steps were employed. Two of them were done 
for all methods. First, the data were normalized by 
subtracting the mean value and dividing by the overall 
standard deviation. Thus, each voxel had mean activity of 
zero and unit standard deviation. Secondly, the outliers were 
removed by setting all values that were beyond 3 standard 
deviations from the mean to a fixed value of 3 or −3, 
depending on the sign of the original value. 

III. METHODS 

A. Spectral Clustering 
Our spectral clustering method requires the data to be in 

matrix form. The colums of the data matrix (data points 
x1,...,xn) contain the signal intensity measured at each voxel 
at each time point. So the data matrix is a t×v matrix (t = 
number of scans, v = number of voxels). The spectral 
clustering uses the similarity matrix S=(sij)i,j=1..n to group the 
data points into k clusters. The sij is nonnegative and 



symmetric and reflects the relationship between xi and xj. In 
this study, we have used a normalized spectral clustering, a 
common variant of the spectral clustering as follows [10]: 
1) Use Gaussian as a similarity function.  
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2) Compute the normalized Laplacian matrix 
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3) Compute the first k eigenvectors v1,…,vk of L. 
4) Create the matrix V containing the vectors v1,…,vk as 

columns (V ∈  Rn×k). 
5) Normalizing the row sums of V to have norm 1, that is 
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Cluster the rows of U (yi ∈  Rk)i=1,...,n with the k-means 
algorithm into clusters C1,…, Ck. 

An unpleasant aspect of spectral clustering is the large 
amount of memory used for storing S and the computational 
cost for eigen-decomposition of the matrix L, which is an 
N×N matrix where N is on the order of 200,000 voxels [15]. 
In order to solve this problem, Venkataraman et al. 
approximate the eigenvalues and eigenvectors of L using 
Nystrom approximation [12]. In this paper, we use 
sparsification method (t-Nearest-Neighbour (tNN) approach 
[15]) to reduce the memory use. So, the memory 
requirement reduces from O(n2) to O(nt). It is also possible 
to use sparse eigen-solver for the sparse similarity matrix. 
The matrix S is sparsified by retaining only the nearest 
neighbors. In other words, only sij where j(or i) is among 
the t nearest neighbors of i(or j) are kept and other values of 
sij are made zero. For each voxel, the Euclidean distances to 
all voxels are computed, as in (3) and the t-nearest-
neighbors are found. 
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To conserve time, all 2

jx of data are pre-computed. To 
symmetrize the sparse distance matrix, the (i,j) and (j,i) 
elements of the matrix are set to the same value. 

For spectral clustering analysis, several choices should be 
made. First of all, the parameter t in tNN should be carefully 
set to govern the connectedness of the similarity graph. 
Generally, the tNN graph connects points on different 
scales. In order to use this helpful property, we have run the 
algorithm for our realistic data and chose the number 50. 
Secondly, the number of clusters, k, should be chose. Eigen 
gap heuristic is a tool which is designed to solve this issue 
[10]. The goal of this method is to find the relatively small 
eigenvalue λk+1 and set the number of clusters to k. 
However, this method returns ambiguous results in cases 

that the clusters are noisy and overlapping. Thirdly, because 
of the high dimensionality of the data (fMRI time series), 
direct clustering of that may cause problems. So we have 
used the wavelet coefficients, extracted using discrete 
wavelet transform as the feature to be clustered. For each 
time series, we have computed the detail coefficients of the 
wavelet decomposition at level 3 using the Daubechies 
wavelet of order 4. We have performed spectral clustering 
analysis on both the wavelet coefficients and raw fMRI time 
series. 

Finally, in order to obtain the best results, we have 
performed k-means algorithm five times using different 
random initializations. 

B.  Independent Component Analysis 
Independent component analysis finds functionally 

connected patterns of activity that are as statistically 
independent as possible. The observed data X (the t×v 
matrix) is modelled as[18]: 

 
MSX =   (4) 

 
where M is the t×m mixing matrix and S is the m×v matrix 
whose rows indicate the spatially independent components 
(t = number of scans, v = number of voxels, m = number of 
components). Thus, the independent components can be 
found by the following linear transformation: 

 
WXS =   (5) 

 
where W is the pseudo inverse of M. 

In order to solve the equation, we used two common 
algorithms: the Infomax and the fixed-point, both of which 
minimize the mutual information of the components. The 
Infomax adaptively maximizes the output entropy of a 
neural network and the Fixed-point algorithm (FastICA) 
uses a robust approximation of the negentropy as a contrast 
function and iteratively maximizes it. 
 

After the ICA decomposition, spatial maps were Z-
transformed to absolute value and sign and were thresholded. 
Only voxels with intensities above a threshold were 
considered to be a part of the functional connectivity 
network. 

C. Cross Correlation Analysis 
One of the most used resting-state fMRI processing 

methods is cross correlation analysis that needs a reference 
signal. Wernicke region was selected as a region of seeds 
for the realistic and experimental data. The averaged time 
courses from voxels of these regions were computed as a 
reference signal. Correlations between the reference signal 
and all other voxels were computed. Correlation map were 
then Z-transformed and thresholded. 

IV. RESULTS 

In this section the results for the simulated and 
experimental datasets are presented.  

A. Realistic Data 
The number of clusters was estimated by the eigen gap 



heuristic approach explained in previous section to be 4 for 
spectral clustering analysis.  

Figure 2 shows the result of the functional connectivity 
analysis in the resting state realistic data. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In order to compare the results quantitatively, the Jaccard, 

Accuracy and the score coefficients were used as in (7). 
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where TP is the true positive, TN is the true negative, FP is 
the false positive and FN is the false negative. Table I shows 
the numerical results for the applied methods. 

TABLE I 
JACCARD, ACCURACY AND SCORE COEFFICIENTS FOR REALISTIC DATA  

Method Jaccard (%) Accuracy (%) Score (%) 
SC-tNN 84.5 99.7 99.7 
SC_tNN 

(Wavelet Coefficient) 48.8 98.9 100 

SC-Nystrom 26.8 95.1 -156.6 
CCA 63.4 99.0 67.1 

FastICA 0.3 97.4 -6657 
InfomaxICA 16.5 98.2 87.5 

 

The results confirm that the proposed method can detect 
the connected regions without any a priori knowledge about 
the location of seed regions. It is clear from Table I that all 
algorithms can detect the connected regions with high 
accuracy rates which describes the high rate of correctly 
detected unconnected voxels. The proposed approach 
provides higher Jaccard coefficient rate which stands for 
greater number of correctly detected connected voxels and 
lower incorrectly detected connected and unconnected 
voxels. By using wavelet coefficients the dimension of the 
data and so the complexity of the clustering analysis is 
reduced without great change in the score rate but some of 
the connected voxels were not detected (FNs). 

The spectral clustering with Nystrom approximation have 
large incorrectly detected voxels; therefore it is not suitable 
for functional connectivity detection. The reason is that the 
small similarity values are thrown aside in the tNN approach, 
so minor connections between data points are neglected. 
Therefore, by using the tNN approach not only little 
information is lost, but also some noisy/inaccurate similarity 
values might be discarded. On the other hand, there is no 
evidence that Nystrom approximation may provide higher 
quality results than using the fully dense matrix. 

The CCA can detect the connected regions with an 
acceptable results but the requirement for prior knowledge 
constrains the exploration of possible functional 
connectivity and renders the detected functional 
connectivity sensitive to seed selection. 

Table I also shows that the InfomaxICA algorithm has 
outperformed the FastICA algorithm which is similar to our 
previous study [21]. However, the results of spectral 
clustering  analysis with tNN approach is superior to that.  

B. Experimental Data 
For the experimental data the eigengap heuristic approach 

fails to find the number of clusters (the differences between 
consequent eigenvalues were small). So the eigen gaps have 
been computed and compared to a threshold. The number of 
clusters has been set to the number of values above the 
threshold. This number was estimated to be 19. The number 
of sources estimated by the AIC estimation was 79 and the 
result of MDL was 33. So 56 was chosen as an estimate of 
the number of ICs. 

The numerical result of the functional connectivity 
analysis in the experimental data is shown in Table II. 

TABLE II 
JACCARD, ACCURACY AND SCORE COEFFICIENTS FOR REAL DATA 

Method Jaccard (%) Accuracy (%) 
SC-tNN 9.5 98.7 
SC_tNN 

(Wavelet Coefficient) 4.7 93.4 

SC-Nystrom 6.7 98.4 
CCA 1.1 96.8 

FastICA 0.8 98.5 
InfomaxICA 2.0 97.3 

 
These results also confirm that the proposed method can 

detect the connected regions better than the other methods. 
However, the false positive rate is still high in the used 
experimental data. 

 

Figure 2.  Functional connectivity networks detected by: SC-tNN.



V. CONCLUSION 

We have addressed the problem of functional connectivity 
analysis in this paper. Spectral clustering algorithm with the 
sparsifying strategy was employed. Some of the existing 
data-driven methods have been reviewed and compared to 
the proposed algorithm. The experimental results 
demonstrate that the proposed method has solved the 
problem of eigen decomposition of the entire volume of the 
brain and provides a promising approach to find the 
connected regions. 
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