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Abstract 

A real time monocular vision based obstacle detection 
algorithm is presented for static environments. The 
basic idea is developed from the observation that, the 
movements of the obstacle and of the floor are different 
in the image plane. This difference is proportional to the 
obstacle height.  

In a calibrated vision system, tracking vectors can 
be directly converted to the motion field of the 
environment. Therefore, knowing the expected motion 
field of one of obstacle-free regions (bottom of the 
image for example) and assuming no obstacle in the 
view, the expected motion field of other regions is 
calculated. The obstacles can be detected easily by 
comparing the motion filed of each region in two 
consecutive frames with its expected value.  

A geometrical model for the proposed idea is 
developed. Effects of different geometrical parameters 
and noise on minimum height of detectable obstacles 
are studies mathematical and experimentally. In 
addition, the proposed method is compared with 
divergence-based approaches. 

 The proposed algorithm is implemented on a mobile 
robot for real-time obstacle detection. 

1 Introduction 

Obstacle detection and avoidance are among the most 
important behaviors of any autonomous robot. Different 
types of sensors are used in the mobile robots for 
obstacle detection. Among them, vision system has 
received the most attention as it provides more 
information with a higher quality. But real-time and 
dependable obstacle detection methods yet have to be 
studied.   

There are many researches on vision-based obstacle 
detection. A group of the studied methods extract 2D 
information from each single image [1][2][3]. In this 
approach a segmentation algorithm is used to separate 

the dangerous spaces from the safe background.  For 
example Maja et al [1] have used an enhanced 
thresholding method for segmentation and implemented 
their method for real-time navigation. 

 The second group of researchers has used the 3D 
aspects of the obstacles in their obstacle detection 
methods. There are three main techniques to attain 3D 
information. In the first approach, additional sensors are 
used and their information is fused with the image data. 
Stereo vision systems implement this method [4]. Using 
a structured light to add some information to the images 
is the second technique [5]. Sequences of a single 
camera images are used in the third method to attain 3D 
information.  The optical flow and the motion field-
based methods are the most well known procedures in 
this category [6][7][8][9][10][11][12] [13][14][16].  

In this paper a real-time optical flow based 
algorithm for obstacle detection with a calibrated 
monocular CCD camera is presented. The basic ideas of 
presented method and [16] are somehow similar 
however, the main idea of proposed method is inspired 
from physical observations. These observations enabled 
us to develop a geometrical model for the proposed 
method. Using this model, effects of different 
geometrical parameters and noise on minimum height of 
detectable obstacles are analyzed mathematically and 
experimentally. In addition, the presented method is 
compared with divergence-based approaches. 

The assumptions, the basic idea and a mathematical 
model of the presented method are introduced in the 
next section. Then, the obstacle detection algorithm is 
presented. A simple navigation algorithm is introduced 
in section  4. Experimental results and effects of 
different geometrical parameters and noise on minimum 
height of detectable obstacles are discussed in the  5th 
section. Then the most related works are reviewed and a 
comparison is made. Last section gives the conclusion 
of this research.  
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Figure 1: The camera is moved toward the obstacle. 
The displacement of the obstacle and the floor in the 

image plane are different. This difference is 
proportional to the height of the obstacle. 

2 A Mathematical Model  

Assumptions made in this work are very similar to those 
taken in [1] and many other researches. The first 
assumption is that, all obstacles rest on the ground and 
the environment is static. It is also supposed that the 
robot moves on a flat surface. In addition, it is assumed 
that the camera is tilted toward the ground.  

Suppose that the camera is mounted on the mobile 
robot at a fixed height and tilt angle. The camera is 
directed toward the ground, see Figure 1. Assume that 
the mobile robot moves d units forward toward the 
obstacle located at A. This movement is equivalent to 
displacing the obstacle and the environment d units 
backward and toward the camera to point B. Doing so, 
the obstacle projection in the image plane moves from 
A’ to B’. Projecting A’ and B’ back on the floor, points 
C and D are obtained.  
The difference between d ′  and d  depends on the 
height of the obstacle and of the camera from the 
ground.  Mathematically speaking we have:  

d
lh

ldd
−

=−′     Eq.1 

where l is the height of the obstacle and h  represents 
the distance of the camera from the ground. Exploiting 
the above relation is the core of the presented method.  

There are different ways to take benefit from the 
above equation to detect the obstacles. Among those, we 
are interested in the simplest ones applicable in the real-
time systems.  The main steps of one of such methods 
are: 
• Calibrating the camera so that we can project the 
image pixels to the corresponding points on the ground. 
• Selecting some points in the image. 
• Tracking the selected points and measuring their 
movements in the consequent frames using optical flow.  

 

Figure 2: The flow chart of the proposed obstacle 
detection method. 

• Finding the real translation and rotation of the 
camera in some ways and predicting the new position of 
the selected points assuming they are laid on the ground. 
• Finding the difference of the selected point’s 
predicted position with their new position obtained from 
optical flow. Points with non-zero difference are labeled 
obstacle. 

3 Obstacle Detection Algorithm  

Assume that the camera is fixed to the robot and is 
calibrated.  
As shown in the flow chart in Figure 2, some points are 
selected for tracking first.  In this research 225 points on 
a 15x15 grid are selected. Then, the optical flow of each 
selected point is calculated. 

It is taken that the floor is seen at the bottom of the 
images.  Therefore, the robot is able to calculate the 
camera rotation and translation from the optical flows of 
some points at the bottom of two consecutive frames1. 

                                                           
١ It is not a restricting assumption as the robot movements can be 
calculated by many other methods (ex. odometery). 
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After computing the rotation and translation of the 
camera and assuming that all selected points are on the 
ground, the positions of the other selected points in the 
new frame are predicted. 

As mentioned, points on the obstacles have larger 
real optical flows, compared with those on the ground. 
Using this fact, the real and the predicted optical flows 
in the world coordinate are compared in the last step and 
points coming out of the floor are detected. 

Because of noise in the image and presence of some 
weak-textured regions, some errors may exist in either 
the real optical flows or in the predicted positions. 
Therefore, a non-zero threshold must be used when 
comparing the expected and the real optical flows. This 
restricts the obstacle detection precision. Applying a 
temporal filter on the image may increase this precision. 
 

Suppose that the robot moves forward wd units and 
the projection of point A on the ground is displaced 

id  
units on the image plane, see Figure 3.  We have  

 

wi d
dh
Fd

ϕcot+
=                Eq.2 

 
Since the tracking precision is limited by fractions of 
pixel, according to Eq.1 and Eq.2, a threshold restricts 
the minimum height of detectable obstacles (we call this 
value MHDO hereafter). This threshold depends on the 
distance to the obstacle d , height of the camera h , the 
camera tilt angle ϕ , the focal length of the camera F, 
and the image resolution. Therefore, there is a trade off 
between the precision of obstacle detection and filed of 
view of the camera. 

4 Navigation Algorithm 

A simple obstacle avoidance algorithm is developed for 
testing the presented obstacle detection method. In this 
algorithm, the goal of robot is moving straight forward 
and avoiding the obstacles. At first, a danger value 
(Dang), is computed as: 

∑ −
+−=

obstaclesink

k k
k jj

iiDang βα )
2

1()(
max

max
  Eq.3 

where i and j are respectively the number of row and 
column of  considered obstacle  point in the grid2. 
α and β  are  weights  of  contact danger in two 
directions.  If |Dang| is more than a threshold, the robot  
turns left or right considering the sign of Dang value. 
The robot stops if |Dang| is greater than a second 
threshold. The experimental result of implementing the 
introduced obstacle detection and avoidance methods is  

                                                           
2 The grid is on the robot coordinate frame. 

 

Figure 3: Movement in real world (from A to B) and its 
projection in the image plane. 

presented in Figure 4-b. Figure 4-a shows the obstacles 
and the robot at its start point.  

5 Experimental Results and Parameter 
Effects  

The presented algorithm is tested on some real image 
sequences in real time for the mobile robot shown in 
Figure 4 (b). The computation cost of the presented 
algorithm for 225 points (a 15x15 grid) on a 384x288 
pixel image is about 130 ms/frame on a 600 MHz Intel 
MMX CPU with 128 MB RAM under M.S. Windows 
98.  This means 8 frames/sec and is very acceptable for 
real time obstacle detection with this configuration. 

Figure 5 (a) depicts the difference between the real 
and the predicted positions of the tracked points in XY 
coordinates. Finally, in Figure 5 (b) the points detected 
in unsafe regions are shown. 

In these experiments, the camera height and tilt 
angle are 23 cm and 40 degrees respectively. In this 
system, MHDO value is about 1.5 cm. For example in 
Figure 5 (b) there is a (10.5cm x 6.5 cm x 8cm) box and 
all of its selected points except some bottom points are 
marked as obstacle. 
 

5.1 Parameters Effect 
As mentioned in section 3, because of presence of noise 
and limitation on computation precision, MHDO is 
greater than a non-zero value. In fact, MHDO is a 
function of the camera configuration and motion and the 
obstacle distance in presence of noise and limited 
computation precision. In this section, effects of these 
parameters on MHDO are studied. It is clear that, more 
accurate optical flow is obtained for images with higher 
resolution. Therefore MHDO is in reverse proportion 
with the image resolution. In contrast, as the dimension 
of blocks used in optical flow computation is fixed, the 
computation time is increased for higher resolution 
images. 
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(a)     (b) 

Figure 4: a) Robot and its environment clattered by obstacles.  b) The path planed by obstacle avoidance algorithm. 
 

   
(a)      (b) 

Figure 5: a) The experimental mobile robot. b. The computed optical flow vectors of the selected points. c) The 
differences between the real and the predicted motion field in the world coordinate. d) The obstacle is detected at the 

marked points

Figure 6-a shows dd −′  (the difference of real and 
predicted optical flow) for obstacles of heights 5 to 50 
mm placed in different image depth. Applying the 
threshold, MHDO can be found. It is seen that MHDO 
increases for larger image depths. 

According to equation Eq.1, dd −′  is in reverse 
proportion with the camera height. As the result, the 
signal to noise ratio is decreased for higher camera 
position. Consequently, MHDO is proportional with the 
camera height. Figure 6-b confirms this fact. 

The robot speed affects MHDO value. The 
difference of two consecutive frames is increased for 
faster robot motion and fixed frame rate. Therefore, 

dd −′  and the optical flow computation time are 
increased. Consequently, MHDO is decreased for faster 
robot motions. Figure 6-c shows the experimental 
results.  

Eq.2 shows that, propagation of a constant error in 
the optical flow and noise in the image affects wd , and 

dd −′  consequently.  According to this equation, a 
noise in the image affects dd −′  more for the smaller 

tilt angles (ϕ ). Therefore, as shown in Figure 6-d, 
MHDO is larger for the smaller tilt angle of camera.  

 

6 Related work 

There are four main categories in the vision based 
obstacle detection algorithms. First category contains 
most of monocular segmentation based approaches. 
These approaches are computationally effective 
[1][2][3].Therefore, this set of algorithms could reach to 
a real-time implementation. 
The main disadvantage of these methods is their 2D 
way of looking at the world. For example, in [1], Maja 
segmented a single image by his thresholding method to 
the safe and the dangerous regions. As reported in [1], 
his method fails when there is a shade or any pictures on 
the ground such as carpets etc. In fact, in these types of 
methods, there is no difference between the obstacles 
and their painted pictures on the ground. 
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(a)     (b) 

 
(c)     (d) 

Figure 6: a) The difference of real and predicted motion field dd −′  for different heights of obstacles. b) MHDO 
value for different heights of the camera. c) MHDO value for different camera tilts angles. d) MHDO value for 

different robot movements between consecutive frames. 

Second set of methods such as [4] , known as stereo 
vision based approaches, tries to achieve a 3D image by 
adding an extra camera. Having a 3D perception, these 
methods can recognize the obstacles more effectively. 
But these methods are computationally expensive. Also 
two cameras must be used that increases the system 
complexity, cost, and volume. The structured light 
based algorithms, such as [5], are categorized in the 
third group. These methods can obtain a 3D model of 
the world with less computation, compared with stereo 
vision systems. But the required equipment is expensive 
and they make artifacts in the environment, which are 
undesirable in most of the cases. 

The last category consists of optical flow based 
algorithms. For example, Meyer [7] used a term known 
as TTC for detecting obstacles in some real images. 
Also Camus et al [12] used the divergence term for 
detecting obstacles in real-time and their robot could 
wander about 26 minutes without collision. Kruger et al 
[9] implemented a real-time system that uses an 
additional hardware for optical flow tracking.  

In most of the reviewed researches, divergence is 
used as a criterion for obstacle detection. Divergence is 

independent of the camera rotation and is somehow 
proportional to the time to collision (TTC). As 
derivatives of the optical flow are required, there should 
be sufficient selected points in the image for the optical 
flow computation.  It is not only time consuming but 
also the optical flows of a few points cannot be 
precisely computed. For instance, in weak-textured 
obstacles, only the edge points have valid optical flows. 
Our proposed algorithm exploits the natural effects of 
the obstacle geometry on the image and detects the 
obstacles by tracking each selected point separately. As 
a result, we can reduce our computation time by 
decreasing the number of the selected points, if 
necessary. This reduction affects the precision of the 
divergence method much.  

In [16], a Kalaman filter is used on a series of 
consecutive image frames to find the difference of 
predicted and the calculated optical flow. The calculated 
difference is used for obstacle detection.  
The obstacle detection method presented [16] is the 
most related research to our approach.  In contrary to 
[16], the main idea of proposed method is inspired from 
physical observations. In addition, using these 
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observations, we developed a geometrical model and 
studied the effects of different geometrical parameters 
and noise on minimum height of detectable obstacles.  
 

7 Conclusion  

In this paper, a simple and computationally fast obstacle 
detection method is proposed and effects of different 
geometrical parameters and noise on minimum height of 
detectable obstacles are studied.  

It is analytically discussed that, the presented 
method exploits the effects of object’s geometrical 
aspects on the optical flow. Therefore, it is possible to 
increase the minimum height of detectable obstacles by 
changing some parameters such as tilt angle and height 
of the camera and the robot speed.  

The developed method can be used more efficiently 
relative to divergence-based algorithms. The 
implementation on a PC-based system showed that it 
could be used in unknown stationary environment for 
real-time obstacle avoidance. 

Results indicated that, the presented method is much 
less sensitive to noise when compared with divergent-
based methods. In addition, as there is no need for 
computing the derivative of the obtained optical flow 
(divergence), we can easily select only the points 
located in relatively strong-textured regions. This is 
another advantage of our approach over the divergence-
based algorithms. 

Using color information for increasing robustness of 
the proposed method is the next step of this research. 
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