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ABSTRACT 
 
FCM suffers from some drawbacks such as a priori 

definition of number of clusters, unidentified statistical 
significance of results, and instability of results when it is 
applied on raw fMRI time series. Using the randomization 
we developed a method to control the rate of false 
positive detection in FCM which gives a meaningful 
statistical significance to the results. Making use of it, we 
derived the optimum number of clusters. In this study we 
applied the FCM on a feature space that takes the 
variability of hemodynamic response function into 
account and compared it with the cross correlation feature 
space. 
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1. INTRODUCTION 
 
Deoxygenated hemoglobin acts as an endogenous 

paramagnetic agent. Therefore, a reduction in the 
concentration of deoxy-hemoglobin increases the T2* 
weighted magnetic resonance signal. Based on this, 
functional magnetic resonance imaging (fMRI) measures 
changes in blood oxygenation and blood volume brought 
about by neural activity of the brain while a subject is 
performing some cognitive or motor task. 

The majority of fMRI practitioners currently use 
statistical techniques such as t-test or cross correlation to 
determine whether voxels of the brain show task related 
signal variation. In statistical methods, the resulting 
activation map is usually characterized with a significance 
level which determines the rate of false alarm occurrence 
(type I error). To compare such statistical methods, one 
should compare the results obtained with the same false 
positive rate. 

The main drawback of these methods is their 
assumptions or models of the noise structure, the 

statistical behavior of fMRI data, or activation procedure 
which may not be true. These assumptions bias the results 
obtained by such methods to the specific results especially 
in the cases where experimental conditions become more 
complex or when applied to data of different subjects [7]. 

Beside these model-based statistical methods, some 
model-free methods such as PCA, ICA, cluster analysis, 
and self organizing maps have been used [8]. In 
neuroimaging model-free analysis has been mostly carried 
out using clustering methods. The aim of clustering 
techniques is identifying regions with similar patterns of 
activation. They partition the brain voxels in some 
predefined number of clusters and one cluster will be 
chosen as the active cluster. Different clustering methods, 
such as k-means, Kohonen clustering neural network, and 
hierarchial clustering have been used in this field, but the 
most popular method has been fuzzy C-means (FCM) [2]. 
FCM gives the membership map of brain voxels in 
different clusters. After FCM convergence, the cluster 
with the most similar centroid to stimulation pattern is 
selected as the active cluster and the membership degrees 
of image voxels to this cluster (u) is compared with a 
threshold ua in order to detect activated voxels. 

Defining the right number of clusters is one of the main 
issues in clustering brain voxels. For this purpose some 
cluster validity measures have been proposed but this 
intensive search for a standard index has not yet 
succeeded [13]. Another drawback of FCM and other 
clustering techniques is their inability to assign statistical 
significance to the results. For example choosing different 
number of clusters, or thresholding the membership 
degree with different ua’s, lead to considerably different 
activation maps. Each result corresponds to a specific but 
unknown level of confidence. In other words, choosing a 
high ua or a high number of clusters decreases the 
probability of false detection. As a result, one cannot 
compare the results obtained by statistical methods and 
clustering methods. 

In order to limit number of false positives in clustering 
of fMRI data, Jarmasz et. al assumed a linear model for 
time series of each cluster. Each time series of a cluster is 
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considered as the center of cluster multiplied by a 
correlation coefficient plus a residual sequence. Then 
significance of correlation coefficient is checked [14]. 
Baumgartner et. al did the same significance test through 
resampling the centers of clusters in time domain to avoid 
the model assumption [11]. Aufferman et. al proposed a 
method using bootstrap and Fisher’s linear discriminant 
function, which relies on the multivariate normal 
assumption to assess the statistical significance associated 
with partitioning one cluster into two clusters or the 
inverse problem of combining two clusters into one 
cluster [12]. 

Here we propose a method based on randomization to 
evaluate the statistical significance of activation and to 
control the false detection rate in the fuzzy clustering 
analysis of fMRI. Making no specific assumption about 
the noise structure, the randomization procedure can 
provide the distribution of “the membership degree to the 
active cluster (u)” under the null hypothesis (resting state 
condition). Using this probability density function, we can 
determine ua in order to control false positive rate. 

We also suggest a method for determining the number 
of clusters using the procedure we introduced for false 
positive control. However, the procedure of controlling 
the false positive rate is independent from the number of 
clusters and the number of clusters can be found via any 
other approach. 

Clustering on the raw time series is potentially able to 
separate cognitive or hemodynamic effects without 
precisely modeling them. However, due to high noise 
level in fMRI experiments, the results of clustering on the 
raw time series is often unsatisfactory and does not 
necessarily group data according to the similarity of their 
pattern of response to stimulation. An associated concern 
is that increasing the size of clustering space leads to 
practical difficulties such as curse of dimensionality [2, 
10, 16]. 

Goutte et. al considered a feature space based on 
correlation between time pattern of stimulus and time 
series. They showed that clustering this feature space 
yields noise reduction, improved performance and 
robustness [2,10]. Therefore they assumed a fixed 
reference as the time pattern of activation to construct the 
feature space. However, the actual functional response 
which may differ in various brain areas, different subjects, 
and under different conditions even in a simple visual or 
motor task, is far more complicated than the usually 
assumed boxcar waveform [7]. Here we have used a 
feature subspace which takes into account these 
variability and compared it systematically with cross 
correlation feature space. 

 
 
2. DATA 
 

A. Simulated Dataset 
For a realistic simulation of fMRI data, computer 

generated ‘activation’ time series were added to the 

measured time series of a single slice of a resting state 
experimental fMRI data in 116 voxels and with different 
contrasts (1%, 1.5%, 2%, and 2.5%). The activation time 
series was obtained by convolving a stimulation pattern (a 
boxcar function with five periods of 60 seconds ON and 
90 seconds OFF) with a Gamma function that models the 
hemodynamic response function (HRF). In order to model 
the variability of the HRF, the parameters of the Gamma 
function were varied randomly between different 
activated voxels. Fig. 1 shows the spatial location of the 
active voxels.  

 

 
Fig. 1. Spatial pattern of activity in the simulated data. Activations were 
added to the dataset in the regions shown. The activation contrasts for 
the columns (from left to right) are 1%, 1.5%, 2% and 2.5% , 
respectively. 

 

B. experimental Dataset 
Functional images were acquired from 6 normal 

volunteers using a single-shot GRE spiral scan sequence 
(TR=2 sec, TE=30 ms, FOV=22022096 mm3, matrix 
size=646424) on a 3 Tesla GE MRI scanner (General 
Electric, Milwaukee, WI, USA). The subject performed a 
finger tapping task with both hands. The task consisted of 
12 periods of 36 seconds, where each period contained 18 
seconds of finger tapping, followed by 18 seconds of rest. 
The first four volumes of the functional images were 
discarded and the remaining volumes were motion 
corrected using the AFNI software package [6]. Linear 
drifts and mean components were then removed from 
each voxel time-series.  

 
 
3. Methods 
 
Our proposed method consists of three steps. First, a set 

of features are extracted for each fMRI time series. This 
step will be explained in Section A. In the second step, 
FCM will be applied on proposed feature space for 
different number of clusters in order to select the 
optimum number of clusters using the method described 
in Section C. Finally, FCM will be applied with the 
optimum number of clusters. After FCM convergence, the 
cluster with the most similar centroid to the stimulation 
pattern is selected as the active cluster. Then, a statistical 



membership threshold (ua) corresponding to desired false 
alarm rate will be computed using the method proposed in 
Section B. Then, the membership degree of each voxel to 
the active cluster (u) is compared with threshold ua and 
voxels which have greater “membership degree to the 
active cluster” than ua will be considered as active voxels.   

 
A. Feature Extraction 

Clustering raw fMRI time series may lead to stability 
problems and the risk of clustering on the noise rather 
than on the activation because of poor fMRI signal to 
noise ratio. Therefore, feature spaces based on cross 
correlation of a fixed reference time pattern and fMRI 
time series has been used as a proper feature space for 
cluster analysis of fMRI [10]. However the hemodynamic 
response function (HRF) of brain has been shown to vary 
significantly between different brain areas or subjects [5].   

The Gamma hemodynamic response function, 
commonly used in statistical analysis of fMRI, includes 
two unknown shape parameters that are usually selected a 
priori by the analyst. Hossein-Zadeh et. al [1] proposed a 
new method that approximates the Gamma HRF over a 
wide range of parameters by a linear combination of three 
elementary signals. These elementary functions were 
derived from singular value decomposition of a large 
number of signals generated by systematically varying the 
parameters of gamma function. The elementary signals 
together accounted for 99% of the total variation in the 
data. Figure 2 shows these signals. Convolving these 
elementary signals with the stimulation pattern provides 
three basis functions (z1(t), z2(t), z3(t)) for signal subspace. 
Therefore each fMRI time series may be considered as eq 
(1) where e(t) is the error term considered as noise. 
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 The unknown coefficients 1, 2, and 3 may be 
obtained for each voxel through least squares (LS) 
estimation. These coefficients along with a conventional 
cross correlation coefficient cc, (the cross correlation 
between y(t) and the stimulation pattern) is proposed as a 
feature space for FCM clustering. We call this feature 
space HRF-based feature space. Considering the ability of 
the elementary functions to model the hemodynamic 
response variability the coefficients 1, 2, and 3 are 
supposed to provide appropriate features for clustering. 

 
B. False Alarm Rate Control 

After FCM convergence the cluster with the most 
similar centroid to stimulation pattern is selected as the 
active cluster and the membership degrees of each voxels 
to this cluster (u) is compared with a threshold ua in order 
to detect activated voxels. This threshold strongly affects 
the results significance.  But it has been chosen a priori 
and heuristically by investigators till now. By comparing 
u at each voxel with ua one tests the null hypothesis 
H0:’no activation’, and rejects it if u>ua. For controlling 
the type I error of this test at level α, the threshold ua must 
be found such that prob(u>ua | H0) = α. This requires the 
probability density function (pdf) fu(u|H0), which is 

difficult to derive theoretically. We propose a method 
based on randomization for finding this pdf. In this 
research, we use the resampling procedure introduced by 
Bullmore et. al [9], which permutates the wavelet 
coefficients of fMRI time series in order to make 
surrogate data under the null hypothesis. The wavelet 
coefficients (obtained using Daubechies basis with 4 
vanishing moments) of the fMRI time series are 
permutated at different levels of resolution (in 4 levels), 
and then an inverse wavelet transform is applied on them 
to generate various realizations of data under null 
hypothesis 

0 5 10 15 20
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time(sec)  
Fig. 2. Convolving the above elementary signals with the stimulation 
pattern produces three basis functions (z1(t), z2(t), z3(t)).  

 

 FCM clustering is then applied on each set of 
randomized data while we hold the center of active cluster 
found before randomization unchanged, and then the 
membership degrees of all voxels in the active cluster will 
be computed. These values construct an empirical 
histogram which estimates the required pdf fu(u|H0). 
Using this histogram one finds a proper threshold 
corresponding to the desired α. Thresholding the active 
cluster membership degree map of brain voxels with this 
threshold generates statisticaly meaningful results. 

 
C. Number of Clusters 

Logically choosing the optimum number of clusters in 
FCM leads to the most accurate detection of fMRI 
activation. The area under the Receiver Operating 
Characteristics (ROC) curve is commonly considered as a 
good criterion for characterizing the detection accuracy. 
We are facing two issues in using ROC curves in fMRI 
data analysis with fuzzy clustering: first we can not 
control the false alarm rate in activation detection via 
fuzzy clustering; second, there is no way to measure true 
positive detections when applying the method on 
experimental fMRI data. The first issue has been 
addressed with the method described in pervious section. 
To overcome the second issue, we used the fact that truly 
activated voxels tend to be spatially clustered, while 
falsely activated voxels will tend to be scattered so that 
one does not expect random spatial activations. These 
scattered voxels mainly appear as single voxels which are 



treated in many investigations as false detections and they 
are removed from the results [15]. We used the number of 
detected single voxels (voxels with no activated 
neighbors) as a criterion for estimating the false positive 
detection in experimental data. In fact based on spatial 
connectivity of active voxels, we are looking for the 
number of clusters that produces the most compact 
activation regions with less single voxels. 

For a particular number of clusters, we do the following 
setps; first we apply the method proposed in the previous 
section for various amounts of α in order to find their 
corresponding thresholds; using these thresholds then we 
find the corresponding active regions by thresholding the 
active cluster membership map obtained from fuzzy        
c-means clustering (FCM); Next an estimate of true 
positive detections is made by excluding the single voxels 
and counting the remaining voxels. We use these 
estimates in order to derive an estimate of  for different 
values of α. This produces a ROC curve for the specified 
cluster number. The area under this ROC curve in the 
interval   [0 0.1] (the common interval for alpha used in 
fMRI) is used as the cluster validity measure. By 
performing these steps one can measure the cluster 
validity for different number of clusters and then select 
the optimum number which has the maximum measure.  

 
 
4. Results 
 
An estimate of the false alarm rate of an fMRI detection 

method can be made by applying the method to the 
resting state data. In order to provide the resting state 
data, time series of activated voxels were discarded from 
each of 6 fMRI experimental data. After computing the 
cross-correlation map for each data, the active voxels 
were detected for false alarm rate of 0.1, and their time 
series were discarded from the data. This ensures us that 
the remaining voxels are in the resting state. The proposed 
method, explained in Section 3-B, was applied on each 
resting state data, and activated voxels were detected by 
assuming different false alarm rates. An estimate of the 
actual (occurred) false alarm rate is then made in each 
case by dividing the number of detected voxels to the 
number of voxels in the analyzed resting state data. 

Fig 3 graphs the expected false alarm rate versus the 
observed (measured) false alarm rate for one of the 6 
subjects. Table 1 shows the numerical values of theses 
parameters for all 6 subjects. This figure demonstrates the 
ability of our proposed method to control the false 
positive rate. In fact, using the pdf of u under the null 
hypothesis for choosing the threshold is the main 
foundation of false positive control. One of the estimated 
pdf’s has been shown in Fig 4.  
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Fig. 3.The measured false positive rate versus its expected value in one 
of the 6 subjects. 

 
Table 1.Numerical values for Expected alpha value versus observed 

false alarm rate for 6 subjects. 

 
We have also examined our method for defining 

number of clusters on experimental dataset, and compared 
it to the results of SCF cluster validity measure proposed 
by fadili et. al [3]. In 4 out of 6 subjects two methods 
derived the same number of clusters, whereas in 2 
subjects their proposed “number of clusters” were 
different by 1. However, by repeating the procedure, our 
method shows less sensitivity to the initial values of 
FCM. Fig 5 shows the ROC curves, corresponding to one 
of experimental data, obtained by different number of 
clusters. This graph suggests N=6 as the optimum number 
of clusters. 

Although our proposed method for false positive 
control can be used in applying the FCM on any kind of 
feature space, we have shown that the HRF-based feature 
space provides improved detection sensitivity over 

alpha subject 
1 

subject 
2 

subject 
3 

subject 
4 

subject 
5 

Subject 
6 

0.01 0.0102 0.0108 0.0102 0.0119 0.0111 0.0111 

0.02 0.0196 0.0197 0.0196 0.0222 0.0209 0.0213 

0.03 0.0307 0.0307 0.0299 0.0324 0.0298 0.0307 

0.04 0.041 0.0418 0.0392 0.0469 0.0444 0.0444 

0.05 0.0503 0.0512 0.0496 0.0503 0.0529 0.0518 

0.06 0.0597 0.0614 0.0597 0.064 0.0631 0.0631 

0.07 0.07 0.069 0.07 0.0694 0.0725 0.0725 

0.08 0.0802 0.0811 0.0785 0.0833 0.0811 0.0819 

0.09 0.0896 0.0904 0.0887 0.093 0.0904 0.0904 

0.1 0.0998 0.1024 0.099 0.1058 0.1038 0.1041 
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Fig. 4. Empirical histogram of “membership degrees to the active 
cluster” under the null hypothesis, obtained by randomization in one of 
experimental data sets. This histogram has been used as an estimate for 
fu(u|H0) in that subject. 
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Fig. 5. The ROC curve for N=2,4,6,7. 

 
the cross-correlation feature. FCM clustering activation 
detection with controlled rate of false alarm was applied 
on both simulated and experimental fMRI data using both 
feature spaces. m=2 suggested in [4] was used as 
fuzziness index of FCM. In simulated data, where an 
ROC curve can be derived, the HRF-based feature space 
demonstrates an improved sensitivity (Fig. 5). 

Finger-tapping paradigm regularly produces activation 
in the sensorimotor cortex (SMC), supplementary motor 
area (SMA), and cerebellum. Activity in the sensorimotor 
cortex produces transient neural activity in subcortical 
regions [5]. Moritz et. al reported activation detection in 
subcortical regions by changing the temporal duration of 
the reference function [5].In the experimental fMRI data, 
using HRF-based feature space revealed activation in sub-
cortical regions where the cross-correlation feature failed 
to detect them. Table 2 shows the activated regions of 
both feature spaces, and Fig. 6 shows an example of such 
a case. These results are consistent with the study 
performed by Moritz et. al [5]. 
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Fig. 5. Comparison of the number of correctly detected active voxels 
(true positives) for HRF-based feature space compare to cross-
correlation coefficient feature space at different false alarm rates. 

 
Table 2. Number of subjects who showed activation in specific 

regions for different feature spaces. 
Detected 

Activation  
Region 

HRF-based 
Feature Space 

Cross Correlation 
Feature Space 

SMA 6 5 

SMC 6 6 

Cerebellum 6 6 

Putamen 2 0 

Thalamus 3 0 

Temporal 
Gyrus 

2 0 

 

 
 
Fig. 6. Activation regions detected by the proposed method, overlaid on 
the corresponding anatomical slices. Activation is detected in SMC, 
SMA, thalamus, cellebrum, putamen, and temporal gyrus at α =0.005. 

 



5. CONCLUSION 
 
A method for controlling false positive rate in FCM was 

proposed and its efficiency was evaluated by activation 
detection with FCM on 6 rest fMRI data. Fixing the false 
positive rate in activation detection using FCM, makes it 
possible to compare the FCM with other fMRI activation 
detection methods. One can also evaluate the performance 
of different FCM-based methods, such as using different 
feature spaces. An exact comparison between the above 
methods can not be made without considering the 
statistical significance of the results. The proposed 
method controls the rate of false positive occurrence 
without any assumption about the noise or activation 
pattern at the expense of computational complexity of 
randomization. Using this method, we compared two 
feature spaces: cross correlation feature space; and HRF-
based feature space. Our comparison using simulated and 
experimental data showed improved sensitivity of HRF-
based feature space over the cross correlation feature 
space. In the analysis of 6 finger-tapping fMRI data, 
activation was detected in sub-cortical regions using 
HRF-based feature space, where the cross-correlation 
feature space failed to detect them. 
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