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Abstract: Based on a discrete dynamic contour model, a method 

for segmentation of brain structures like thalamus from magnetic 

resonance images (MRI) is developed. A new method for solving 

common problems in extracting the discontinuous boundary of a 

structure from a low contrast image is presented. External and 

internal forces deform the dynamic contour model. Internal forces 

are obtained from local geometry of the contour, which consist of 

vertices and edges, connecting adjacent vertices. The image data and 

desired image features such as image energy are utilized to obtain 

external forces. The problem of low contrast image data and unclear 

edges in the image energy is overcome by a new algorithm that uses 

several methods like thresholding, unsupervised clustering methods 

such as fuzzy C-means (FCM), edge-finding filters like Prewitt, and 

morphological operations. We also present a method for generating 

an initial contour for the model from the image data automatically. 

Evaluation and validation of the methods are conducted by 

comparing automatic and radiologist segmentation results, which 

confirms good performance of the new method. 
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1. Introduction 

One of the most important neuro-anatomic structures is thalamus. The thalami are the 

largest, most internal structures of the diencephalon, consisting of two oblique ovoid nuclear 

masses of gray matter situated at the rostral end of the mid brain on each side of the third 

ventricle. Each thalamus is about 3-4 cm long [1]. Thalamus is the gathering center of sensory 

and conceptual signals and tunes them. Motor nuclei of the thalamus receive signals from the 

striatum and cerebellum and project into the motor and premotor areas of the cerebral cortex. 

The thalamus has a key function in the sensory systems [2]. Thalamus specifications like its 

volume or its intensity on MR images are expected to change by many neurological diseases. 

Thalamus has relatively low contrast and discontinues edges. These difficulties 

complicate the accurate automatic segmentation of the thalamus. Manual segmentation 

requires extensive human interaction and considerable training, and both intra-rater 

reproducibility and inter-rater reliability may be difficult to achieve. Segmentation of the
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thalamus with conventional methods, such as edge tracking, thresholding or region growing 

individually is not reliable because of low contrast and discontinuous edges of the thalamus. 

Deformable models seem more appropriate than conventional segmentation and standard edge 

detection methods [3], due to their relative power in treating each structure as a unit object, 

producing a closed contour, and their flexibility. The result of deformable models 

segmentation depends on the operator that generates the initial contour. To overcome this 

difficulty we have generated the initial contour by a new algorithm. The new algorithm uses 

fuzzy c-means (FCM) clustering [4,5], thresholding, and morphological operations. 

 

2. Background 

Active contour models, first introduced by Kass, Witkin and Terzopoulos [6,7] and have 

been investigated and applied in various ways. Terzopoulos’ snake model minimizes the 

energy of spline segments of a contour. Active contour models are often referred to as the 

classic snake or deformable contour model. They are energy-minimizing splines guided by 

internal shape forces, external constraint forces, and external image forces like edges that pull 

them towards image features during an optimization process. They dynamically segment an 

image by locking onto nearby edges and localizing them accurately.  

Over the past decade, a considerable amount of research has been done concerning 

different aspects of these deformable models. Different authors have used different methods 

for solving differential equations related to the contour evolution [8]. The models that use 

differential methods for minimizing the contour energy (e.g. [6,7]) are computationally 

inefficient and can lead to numerical instability, due to the discrete nature of the image. In 

contrast, several authors have used different dynamic programming methods. Geiger et al. [9] 

and Amini et al. [10] have used dynamic programming for tracking and matching the 

deformable contours and minimizing its energy, Grzeszczuk and Levin [11] used simulated 

annealing [12] for evolution of the contour, to make the model stable. They have incorporated 

statistical region-based image features to improve the reliability of the algorithm and used it 

in multi-region segmentation. Some of the authors used analytical or parametric models to 

represent a contour (see Refs [13]). Although this makes the model more compact and is 

useful for applications such as motion analysis [14], structures with irregular shapes and sharp 

corners cannot be easily represented by these models and may need a large number of terms 

and a considerable increase in calculations. In contrast, discrete models seem to be more 

flexible in fitting into edges with high curvature [15]. Leitner and Cinquin [16] have redefined 

internal forces and used the results for 3D segmentation.  

Researchers have used deformable contours for segmentation and identification of 

structures from MR brain images [17], like hippocampus [18-20]. Lobregt and Viergever [21] 

have introduced a new discrete dynamic contour model. Their model is not well suited for 

segmentation of low-contrast images. They have introduced a damping force for stabilizing 

the contour, but it is hard to find proper weighting for this force from image to image or 

within different areas of an image. Also, this force cannot always make the contour stable 

without decreasing its accuracy. Ghanei et al. [18] followed the geometry introduced in [21], 

but they have redefined external forces by using an edge-tracking method. They have 

addressed the problems associated with optimizing the internal force weight and contour 

stability. The external force, which pulls the dynamic contour towards the object edge, is 

equal to the inverse of the gradient of the image energy. 

They have applied standard edge finding methods on the image data to get the image 

energy, but this image energy is not always appropriate for deriving external forces, because 
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of low-contrast image data and therefore unclear and discontinuous edges in the image 

energy. Due to the low variation of gradient in the edge position of the above image energies, 

the external force will not move the contour. Also, their segmentation is semi automatic and 

the result depends on the operator due to generating initial contour. Our work follows the 

geometric model introduced in [21] and [18], but we have improved the external image 

energy to segment thalamus by a new algorithm. The new algorithm has overcome the 

difficulties that obtaining image energy had by using FCM clustering, thresholding and 

morphological operators. We have also presented a new algorithm to generate the initial 

contour to reduce the dependency of the segmentation results on the operator. 

 

3. Discrete Contour Model 

In this section, first, the basic structure of the model and force fields [21] are presented. 

Then, some improvements in the model and changes introduced into the deformation process 

and the image energy [18] are briefly described.  

 

3.1. Model Structure 

The geometric structure of model (see Figure 1) and force fields are explained here. The 

dynamic model is a contour consisting of vertices, which are connected by straight segments. 

The position of a vertex is represented by a vector iP . The unit vector in the direction of the 

edge ( iD ) between vertices is shown by id . The unit tangential vector at vertex i  is it , 

where it  is: 
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By rotating the tangential vector 90º clockwise, the radial vector, ir , is attained. Each 

vertex moves along its radial vector during the deformation. The movement of the snake is 

started from an initial contour. Vertices deform according to the sum of the internal, external, 

and a damping force. The internal force, iinf , , causes the dynamic contour model to be 

smoother and less flexible and is calculated from the curvature of the contour. Curvature is 

determined at a vertex as the vector difference between the unit tangential vectors of two 

joining edge segments: 

1 iii ddc          (2) 

The internal force is driven from the curvature value at vertices convolved with an 

appropriate filter,   ,0,0,2/1,1,2/1,0,0, ik , to prevent changes in parts of the contour 

with average curvature of zero: 

  iiiiin rkcf    ,           (3) 

The external force is responsible for pulling the model near the desired local energy 

minimum or the edges. The external force, iexf ,  is driven from the image features. For 

calculating the external force, we have 

   iiiimiiex ryxfrf  ,.  ,          (4) 

where ),( ii yx  is the position of vertex i  and (.)imf is gradient vector of the image feature. 
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The damping force, idampf   , , is set proportional to the square of the vertex speed. Applying 

some weights to internal and external forces determine the smoothness of the result and 

whether the contour chases the image feature in exact way or in global way or between two. 

The dynamic contour moves to perform a coarse to fine tracking of image features, iteratively. 

In each iteration, a resampling over contour is done to avoid having too large or too short 

segments. 

 

3.2. Improved External Forces  

A method is presented in [18] to avoid the contour trapping at undesired edges or 

undesired local minimum energies. In this method, for each vertex, i , an edge is searched 

within a specified distance along radial vector ir . Each point on ir  can be represented by a 

parametric vector such as iii rps    ,   .   is changed between max to max with steps 

  moving is   ,  along ir  to search from a specified distance inside to outside of the object. 

In this search, the contour may be trapped in the opposite border instead of the correct border. 

To solve this problem we change   between 0 and max  to move is   ,  along ir  from the 

vertices of the contour to the object edge. After finding an edge based on a local minimum of 

the external energy, the external force is calculated which is pointing toward the edge 

location. If no local minimum of the external energy is found the external force is set zero. 

The above model let the user attach springs between the vertices of the contour and the object 

edge. Therefore, the external force pulls the contour vertices toward the edge on the image 

energy. To complete equation (4) in order to calculate the external force, we have 

iiiiiiex rrrpsf minmin, ,  ) . )((         (5) 

where  is a positive constant that normalizes the length of the external force, ismin, is the 

point where the local minimum or the edge is found, and ismin,  equals ii rp min . 

 

4. Proposed Methods 

4.1. Improved External Image Energy  

Here, we describe the deformation process to specify the importance of the image energy. 

The deformation process starts from an initial contour. For each vertex of the contour, along 

Figure 1. The geometric model consists of a set of vertices such as i that is represented by vector iP  

and is connected by edge iD . A radial vector ir and a tangential vector it  are defined for each 

vertex. 
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radial vector is searched to find an edge. A location on radial vector is interpreted as edge, if 

the external energy has a minimum at that location. This search is continued until a local 

minimum of the energy is found. The external force pulls the vertex towards the edge 

location. If no edge is found the external force is set zero. The deformation process is ended 

automatically when all the vertices is stopped or when the number of iterations exceeds a 

limit. Each vertex is stopped when the length of its external force become small. The 

convergence has defined in [21] when the velocity, acceleration, and sum of forces of all 

vertices become zero that is time consuming.  

Using the gradient of the image intensity or other standard edge finding methods may be 

appropriate for some applications. However, since thalamus has a relatively low contrast, low 

signal to noise ratio (SNR) and discontinues edge, well-improved image energy is required for 

extracting the desired image features to move the contour toward the edge object. Due to the 

mentioned difficulties that thalamus in MR images possesses, the image energy that is derived 

from the standard edge finding methods like Prewitt method [22] is not applicable for 

thalamus. We have developed a new algorithm to solve this problem. The improved image 

energy finder (IIEF) algorithm is as follows: 

1. The Prewitt method is used to obtain the basic image energy. Prewitt method finds 

edges using the Prewitt approximation to the derivative. It returns edges at those points where 

the gradient of image intensity is a maximum. The basic image energy is shown in Figure 

2(a). 

2.  A binary image is created from the original intensity image based on the user-defined 

luminance threshold. We have used a value of 0.3 as threshold in our experiments. The binary 

map is overlaid on the prewitt-filtered image to make the strong edges sharp. The results are 

depicted in Figure 2(b). 

3.  Since thalamus is almost entirely a gray matter (GM) structure, we calculate the edge 

map of GM and expect the contour to finally converge to the desired GM boundaries. For 

extracting the GM boundaries FCM (ref, to Appendix) is applied on the original image with 

fuzzification degree equal to 1.7 and the number of clusters equal to 6 (see Figure 2(c)). Fuse 

clusters that include GM to obtain a better and more detailed representation of the GM edges 

around the thalamus. Figure 2(d) displays the result of fusing. 

4. The GM edge map is eroded to remove the gray matter regions around the thalamus 

from its structure. The structuring element have been used for erosion is a 33  matrix 

containing only 1’s. Connected components are labeled in binary image and dilate the results 

with the same structuring element to obtain a detailed representation of the shape of thalamus 

in an isolated cluster. (see Figure 2(e)) 

5. Each pixel is set to zero if its 4-connected neighbors are all 1’s, thus leaving only 

boundary pixels of the thalamus. The acquired boundary map is overlaid on the result of step 

2 (see Figure 2(f)). 

6.  For the algorithm to be effective in finding the thalamus in all the layers of the brain 

MR images, midline should be used. It is important to note that the two thalami often 

connected across the midline by the massa intermedia [23]. In images which two thalami are 

linked together, midline should be obtained to separate the thalami (Figure 2(g)). 

7.  Due to dealing with discrete image energy the final contour will oscillate if there are 

two states with minimum energy for the contour. To avoid this problem, the image energy is 

interpolated by a bilinear function to generate a continuous map. The result is shown in Figure 

2(h). 
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4.2. Generation of Initial Contour 

The deformation process starts from an initial contour. To eliminate dependency of 

segmentation results from operator, we have developed a method to generate the initial 

contour. For this purpose, first we erode the boundary map acquired at step 5 of the IIEF 

algorithm; the structuring element of the erosion used in our experiments is a 55 matrix 

containing only 1’s. Then, we decrease the number of the points on the boundary map by a 

down sampling. The down sampling rate specifies the number of the points the user desires to 

have on the initial contour (see Figure 3). 

 

5. Experimental Results 

We have developed a method based on discrete contour model to segment thalamus and 

similar objects of interest from brain MRI. For this purpose, we have proposed a new method 

to extract the desired image features and developed an algorithm to automate definition of the 

   (a)  (b)  

(a)   (b) 

Figure 4. The image energy obtained by (a) 

prewitt method and (b) the new method (IIEF, 

Section 4.1) 

Figure 3. The initial contour for the thalamus 

of (a) left and (b) right side of the image. 

(e)  (f) (g)  (h) 

(c)  (d) 

Figure 2. (a) The image energy obtained by Prewitt method; (b) The overlaid binary map on the 

basic image energy (part a); (c) FCM clustering result; (d) Result of fusing clusters that include 

thalamus; (e) Result of Labeling connected components in the gray matter edge map; (f) Overlaid 

the coarse boundary of thalamus on the semi-improved image energy obtained in step 2 of section 

4.1; (g) Mid line separated thalami; (h) Interpolated improved image energy. 

(a)   (b) 
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initial contour to overcome the problem of dependency of results on the operator. Automating 

segmentation of specific brain structures from MRI increases the advantages of the model 

over semi-automatic and manual segmentation in regard to speed, easiness, reproducibility 

and independency of results on the operator. The initial contours are successfully extracted 

from the original image adaptively, as are shown as black contours in Figure 3. 

Using standard edge-finding methods such as step expansion filter (SEF), gradient of the 

image gray levels and Prewitt methods are not appropriate for our application. Since the 

thalamus has a relatively low contrast, low signal-to-noise ratio (SNR) and discontinues edge, 

the image energy derived from the standard edge finding methods alone, e.g., Prewitt method, 

is not applicable. Improved image energy is required for extracting the desired image features 

to move the contour towards the object edge. Figure 4 compares the result of Prewitt filtered 

image and the improved image energy. Note that extracting the desired features is almost 

impossible using the Prewitt filter itself (Figure 4(a)). However, in the improved image 

energy, the desired image features, needed for calculating the external forces to move the 

contour towards the real edges of thalamus, are extracted from the original image. The 

problems of extracting desired features due to low contrast and low SNR that causes unclear 

and discontinuous edges in the Prewitt image energies have been overcome by using fuzzy 

clustering, thresholding and morphological operations. The parameters of the dynamic 

contour can be fixed for a wide range of applications, once the designer finds optimal values 

for them.  

Figure 5 shows the result of thalamus segmentation using the dynamic contour model and 

the improved image energy. It also shows the manual segmentation results generated by an 

expert radiologist. We use the Tanimoto similarity measure [4] to quantitatively evaluate the 

experimental results. This measure quantifies the similarity between two discrete-valued 

vectors x and y . It is defined as:  

 
100111

11,
aaa

a
yxST


          (6) 

where the element 
ija is the number of places where the first vector has the i  symbol and the 

corresponding element of the second vector has the j  symbol, 1,0, ji . The values of the 

calculated Tanimoto similarity measure between the segmented regions are listed in Table 1, 

which illustrates excellent agreement between the automatic and manual segmentation results. 

 

      
   (a)   
 

      
   (b)   

 Figure 5. (a) Automtic segmentation  and (b) Radiologist’s segmentation results overlaid on three 

brain slices. 
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Slices 11a  10a  01a  
Similarity between 

automatic and expert 

segmentation 

Left 

thalamus 
 

Case1-SL10 1550 410 139 0.74 

Case1-SL11 2079 63 146 0.91 

Case1-SL12 1118 31 98 0.90 

Case2-SL11 1229 23 225 0.83 

Case2-SL12 1721 126 83 0.90 

Case2-SL13 1069 125 324 0.70 

Right 

thalamus 
 

Case1-SL10 1705 343 98 0.80 

Case1-SL11 1843 48 96 0.93 

Case1-SL12 1047 13 202 0.83 

Case2-SL11 1620 244 57 0.84 

Case2-SL12 1624 152 157 0.84 

Case2-SL13 1417 108 74 0.89 

 

6. Summary 

We have investigated the problem of segmenting thalamus from brain MRI. Thalami 

have a key function in the sensory system due to processing information before forwarding it  

to the select area of the cerebral cortex. Thalami play an important role in the maintenance 

and regulation of the state of consciousness, alertness, and also possibly attention [23]. 

Segmentation of thalamus and its specifications like its volume is expected to be 

influential in noninvasive diagnosis of some important neurological diseases. We have 

developed an improved dynamic contour model for this purpose. We have solved the problem 

of low contrast, low SNR and discontinuous edges of thalamus in MRI that causes uncertain 

and discontinuous edges in the image energies. This has been done by a new algorithm that 

generates appropriate image energy for our application and similar patterns. It helps the 

contour to be absorbed to the real edges of the object of interest. Also, the difficulty of the 

dependency of the result of dynamic contour models on the operator has been overcome by 

introducing a method for generating the initial contour automatically. Finally, the described 

methods have been tested on real clinical brain MRI and results showed a very good 

performance. 
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Appendix  

The FCM is a data clustering technique where each data point (intensity of each pixel) 

belongs to a cluster to some degree specified by a membership value. It starts with an initial 

guess for the cluster centers, which are intended to mark the mean location of each cluster, 

and iteratively moves the centers to the right location within the data set. The optimization 

process is based on minimizing an objective function that represents the distance from any 

given pixel intensity to a cluster center weighted by the related membership value. The 

number of clusters and the fuzzification degree are two of the FCM algorithm inputs. 
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