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ABSTRACT 

 

Automated segmentation of retinal vessels in optic fundus 

images has been the most prevailing effort in many 

researches during recent years. In this paper, we propose a 

multi-scale method based on a weighted 2D medialness 

function. The result of the medialness function is first 

multiplied by the eigenvalues of the Hessian matrix in every 

pixel of the image in order to extract vessel's medial-lines. 

Next, by extracting the centerlines of vessels and estimation 

of radius of vessels, the retinal vessels are segmented. 

Finally, the performance of our proposed method is 

evaluated by the DRIVE and STARE databases and 

compared with those of several recent methods. 

   

Index Terms— Retinal vessel segmentation, 

medialness function, eigenvalue, radius estimation. 

 

1. INTRODUCTION 

 

Assessment of morphological features of retinal veins and 

arteries, like diameter, length, branching angle, and 

tortuosity as crucial indicators reveals preliminary 

symptoms of many systemic diseases [1]. Thus, the 

measurement and recognition of exact location of retinal 

blood vessels has diagnostic relevance for the 

ophthalmologists. However, because of multifarious nature 

of the vascular network, manual tracking of retinal vessels is 

arduous task and suffers from variability of diagnostic 

results due to both of the inter-observer and intra-observer 

variations. Therefore, automated segmentation of retinal 

vessels in optic fundus images has been the most prevalent 

effort in many researches during recent years.  

According to [2], automatic retinal segmentation methods 

generally fall into three categories as tracking methods, 

kernel-based and classifier-based methods. For each 

category, several algorithms have been proposed in [3]-[7]. 

In [3], an algorithm as a tracking method has been presented 

which is initialized by a generalized morphological order 

filter to determine approximate vessels centerlines and uses 

a “Ribbon of Twins” (ROT) active contour model for 

segmenting and measuring retinal vessels. Moreover, two 

classifier-based methods have been introduced in [4] and 

[5].  Soares et al. [4] propounded that feature vectors can be 

extracted from a two-dimensional Gabor wavelet transform 

and the pixel’s intensity and a Gaussian mixture model 

classifier can be used for classification. Better results have 

been obtained in [5] where two line operators are used to 

extract the feature vectors whilst a Linear Support Vector 

Machine (LSVM) used as a classifier.  The methods 

introduced by Mendonça et al. in [6] and Yan Lam et al. in 

[7] can be classified as kernel-based methods. In [6], 

Mendonça et al. have performed the segmentation of retinal 

vessels using combination of differential filters (difference 

of offset Gaussians filters (DoOG filters), used for finding 

vessel centerline, with an iterative region-growing method 

that integrates the contents of several binary images for 

filling vessel segments. In the other one, Yan Lam et al. 

have suggested a scheme based on Laplacian operator for 

segmenting blood vessels in pathological retinal images. For 

this purpose, first, the centerlines of vessels are detected 

using the normalized gradient vector field. Due to existence 

of noise in pathological regions, noisy objects should be 

eliminated from the image background. Therefore, as next 

step, they are pruned according to centerline information. 

 In this paper, we use a multi-scale technique for 

segmenting the vessels. We introduce a medialness function, 

previously used for detection of tubular structures in 3D 

space [8], for 2D space and weight it with a weighting 

function to reduce the effect of asymmetric structures. To 

improve the results of the vessel like structures, the resulting 

image is multiplied by the eigenvalues of the Hessian 

matrix. Then, the centerlines of vessels are extracted while 

the exact boundary of vessels is estimated using the 

eigenvalues and the result of medialness function. For 

evaluating the performance of our algorithm, we tested our 

method on the DRIVE and STARE databases and compared 

our results with those reported in the most recent articles. 

The rest of the paper is organized as follows. In Section 

2, we detail the methods used for vessel segmentation. The 

experimental results are presented and compared with other 

methods in Section 3. Finally, Section 4 is appropriated to 

presentation of the conclusions. 

 

2. PROPOSED METHODS 

 

Fig.1 illustrates a block diagram of our proposed scheme. 

As shown in this figure, the method has two major phases: 

vessel medial-line detection and vessel reconstruction. Also, 

each phase is subdivided into several steps whose details are 

explained in the next sections. 
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Fig. 1. Block diagram of the proposed vessels segmentation method.  

 

2.1. Vessel Medial-Line Detection 

 

The main purpose of this phase is to extract the medial axis 

of vessels using a 2D medialness function in several scales 

and sum of smoothed eigenvalues of the image.   

Because of robustness of the medialness function in 

extracting tubular structures, this function has previously 

been used to segment these structures in 3D space [8]. In 

order to apply this function in this application, we define a 

2D form of multi-scale medialness function. Moreover, for 

decreasing the response of asymmetric structures and edges 

which are usually noise and abnormal regions, the function 

is constrained by a weighting function as:  
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Here, R0 is the weighted medialness function and its 

variables are the position of each pixel (x) and the scale σ. 

w(b) is the weighting function and ib is a 2D function 

defined as follows: 
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where )(I (x) is a boundaryness function and is 

equivalent to the amount of gradient of the pixel (x) in the 

image convolved with a Gaussian kernel with a standard 

deviation of σ. v1 is the eigen-vector related to the largest 

eigenvalue of Hessian matrix, and θ is a constant coefficient 

that defines as the relation of the radius of the vessels and 

the scale at which it should be detected.  

Moreover, w(b) used in this application is an exponential 

function shown by the following formula: 
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Since retinal vessels are symmetric structures and the 

intensity of vessel section is estimated by the Gaussian 

function, choosing weighting function as shown in equation 

(3) operates as a matched filter and then intensifies the 

results of vessel’s structures and weakens other structures.    

To reduce the background noise, we use an adaptive 

thresholding using the gradient )(I .  

 (4) 
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Since the amount of R0 near of main axis of vessels is 

greater than )(I , the medial-lines of vessels are enhanced 

after applying this function. Final result is then obtained by 

maximizing the response of medialness function in different 

scales as follows: 

(5) )),((max xRR scalescalemultiscale  

Although, the adaptive thresholding shown in equation 

(4) alleviates the background noises, it attenuates the 

response of vessels pixels. Therefore, employing the 

eigenvalues of the Hessian matrix, having strong response in 

the vessels, can reduce this effect. In order to reduce the 

impact of the image nonuniformity, we first convolve the 

sum of the eigenvalues with a Gaussian kernel. Then, with 

multiplying the consequent image by the multi-scale 

medialness function's response, the vessels are properly 

enhanced. Therefore, the final vessel medialness detection 

filter is obtained by:  

(6) ))(*( 21   GaussianRR multiscalemedial 

Fig. 2(b) illustrates the result of applying the vessel 

medialness detection filter on a retinal image. It is obvious 

that this filter properly extracts the line-like structures from 

the image. 
 

2.2. Vessel Reconstruction 

 

In this phase, the final segmentation result is attained by 

extracting centerline of vessels and estimating radius of 

vessels simultaneously.   

 

2.2.1. Centerline Extraction  

The main idea of centerline extraction step is to provide an 

impeccable vessel's centerlines. In this paper, three 

subsections including post processing, skeletonization and 

reconnection are applied for this purpose.  

 Noting this fact that the result of the previous phase is 

not infallible and noise-free, using post processing step in 

order to reduce the noise and abate the complexity of next 

steps, especially the reconnection step, is imperative. Since 

noisy pixels are usually round and small while fine vessels 

are elongated and larger than noises, we apply a post 

processing step which removes regions based on their area 

and elongation. In fact, the structures are classified to the 

noise and vessels with two features of area and elongation. 

If these parameters for a component are smaller than 

predefined thresholds, we presume it as a noise and remove 

it from the image. Using this assumption, the small vessels 

and capillaries are properly remained after this step. 

In spite of attempting to keep vessels and remove noise, a 

vascular network with some disjoint points is remained after 

the post processing step. In order to connect these disjoint 

points, a reconnection step is used. For this purpose, first, 

the skeleton of vascular network is extracted. Then, by 

considering structural characteristics of retinal vessels, 
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image information and applying some constraints such as 

radius and slope changing constraint in potentially truncated 

vessels, the reconnection step is performed. The final result 

of centerline extraction step is demonstrated in Fig. 2(c).   

 

2.2.2. Vessel Radius Estimation  

To estimate the radius of vessels, we use information 

construed from each step of phase 1. Since each vessel with 

a specific radius appears better in a particular scale of 

medialness function, we can ascribe a unique radius       

(R1= θσ) to each scale. R1 describes maximum symmetrical 

radius which an object can have in a particular scale. On the 

other hands, the eigenvalues can congruously delineate the 

edges of vessels that can be used for estimating radii (R2) of 

vessels. By comparison of two radii (R1 and R2), we can 

discriminate between vessels and abnormal regions and 

estimate an exact radius for a vessel. Since abnormal regions 

are usually asymmetric structures, If R2 is much larger than 

R1, this structure will be an abnormal region and no radius 

is estimated for this region; otherwise, R2 is selected as 

radius of vessel.  Using this estimation and centerlines, the 

final result for segmentation of retinal vessels is attained 

(Fig. 2(d)).  

 

   
(a)   (b) 

   
(c)   (d) 

Fig. 2. (a) Green channel of the original image, (b) vessel medial-line 
extraction, (c) centerline extraction, (d) final result. 

 

3. EXPERIMENTAL RESULTS 

 

Our proposed method was tested on the images of two 

publicly available DRIVE and STARE databases, collected 

by Niemeijer et al. [9] and Hoover et al. [2], respectively. 

The DRIVE database contains 40 color images of the retina, 

with 565 × 584 pixels. A mask is provided for each image of 

this database in order to demarcate FOV. The database also 

consists of binary images with the results of manual 

segmentation. The 40 images were divided into a training 

set and a test set by the authors of the database. The second 

database, STARE database, includes 20 images with size of 

650 × 550. For all of images in this database, a FOV of 650 

× 550 pixels in the images has been supposed and two 

observers manually segmented all of these 20 images.   

To evaluate our results, segmentation accuracy is opted as 

one of the performance measures. The accuracy is estimated 

by the ratio of the total number of correctly detected pixels 

as vessel and background (sum of true positives and true 

negatives) by the whole number of pixels inside the image 

FOV. Furthermore, the ROC curve is sketched in order to 

compare our results with other retinal vessel segmentation 

methods. In an ROC curve, the true positive rate (TPR) 

versus false positive rate (FPR) is plotted. Another 

performance measure reported in this paper is the area under 

the curve (AUC), calculated using ROC. 

In Fig. 3, The ROC curves of DRIVE and STARE 

databases for some recent methods have been compared 

with our ROC curve.   

 

 
Fig. 3. The ROC curves of DRIVE (up) and STARE (down) database for 
different methods. 

 

Also, in Table I, the average of accuracy and area under 

ROC of some methods, including our methods, for the 20 

images of DRIVE's test set and the 20 images of STARE's 

dataset have been represented.   

 
TABLE  I 

PERFORMANCE OF VESSEL SEGMENTATION METHODS  

 DRIVE STARE 

 Accuracy AUC Accuracy AUC 

2nd-observer 0.9473  ------- 0.9354  ------ 

Multi-scale 0.9659 0.9580 0.9756  0.9678 

Ricci et al.[17] 0.9595 0.9633 0.9646 0.9680 

Soares et al.[15] 0.9466 0.9614 0.9480 0.9671 

Mendonça et al.[7] 0.9463 ------ 0.9479  ------ 

Yan Lam et al.[22] ------- ------ 0.9474 0.9392 

 

According to sharp slope of both of our ROC curves in 

Fig. 3, we can infer that the algorithm can reach high TPR 



while maintain FPR low. Also, in Table I, it is obvious that 

the average accuracy of the multi-scale method for both 

databases is comparable to other methods. In fact, it takes 

place due to high value of TPR along with low value of 

FPR. Therefore, it can be concluded that one of salient 

features of this method is to eschew detecting false vessels, 

occurred due to noise or pathological abnormality. Another 

discussable point regarding this table is that the area under 

ROC is comparable with other methods, especially in 

STARE dataset. Actually, because of presence of more 

pathological regions in STARE's images, our proposed 

scheme can better avoid detecting false regions as vessel 

and function more reliably. 

In order to prove our claims graphically, in Fig. 4, result 

of our method versus the result of Ricci et al. [5] on an 

image of DRIVE dataset is demonstrated. As it is obvious, 

the circle around the blind spot has properly been removed 

using the multi-scale method.  

 

 
Fig. 4. From left to right: segmentation results of the Multi-scale approach, 
Ricci et al. method, and Manual segmentation of observer A. 

 

Fig. 5 is another example concerning an image from the 

STARE database with some abnormal regions stuck the 

vessel's areas. In this situation, the multi-scale method has 

congruously found vessels in the midst of abnormal regions. 

Although some vessels have been truncated in these regions, 

reconnection step revived some connections of vessels. 

Totally, this method reached agreeable result compared to 

the results of Soares et al. and Yam Lam et al. 

 

   
(a)   (b) 

   
(c)   (d) 

Fig. 5. Results for an image from the STARE dataset, (a) Proposed method,  

(b) Yan Lam et al., (c) Soares et al., (d) Ground truth 1. 

 

4. DISCUSSION AND CONCLUSION 
 

In this paper, a new approach based on a multi-scale method 

for segmentation of retinal vessel was proposed. Using a 

weighted medialness function along with the eigenvalues of 

the Hessian matrix facilitates detection of vessel structures 

whilst reduces the response of this function for asymmetric 

structures which usually are not vessels.   
Moreover, other steps such as post processing, reconnection 

and radius estimations appropriately affect the amounts of 

FPR and TPR and consequently the final results of 

segmentation. Therefore, it can be concluded that the main 

characteristic of this method compared to other recent 

methods is to better avoid detecting false vessels.   

Notwithstanding mentioned advantage, it seems that our 

method cannot detect fine vessels as well as some recent 

methods (Fig. 5). It can be shown that some of fine vessels 

are removed by the post processing step and these vessels 

are not revived by the reconnection step; this can be 

supposed as a weakness of this scheme. As future work to 

address this problem, we can merge post processing and 

reconnection steps so that these steps operate 

simultaneously and decision about removing a region or 

connecting it to other region is made concurrently.  
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