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ABSTRACT 
We introduce a 3D segmentation framework which uses principal 
shapes. The probabilistic energy function of the method is defined 
based on intensity, tissue type, and location information of the 
structures using a multiple atlas method. For intensity information, 
nonparametric probability density function is used which considers 
intensity relation of different structures. To find a local minimum 
of the energy function, a two-step optimization strategy is used. In 
the first step, shape parameters are optimized based on the analytic 
derivatives of the energy function. In the second step, shapes of the 
structures are fine-tuned using a level set method. The proposed 
method is shown to be superior to some popular methods in the 
literature using a dataset of 64 patients with mesial temporal lobe 
epilepsy. In addition, the method can be used for lateralization with 
accuracy close to that of manual segmentation. 
 

Index Terms— Image Segmentation, Atlas-Based, 
Hippocampus, Epilepsy 
 

1. INTRODUCTION 
Medical image segmentation is one of the most important issues in 
computer aided diagnosis and also one of the most challenging 
topics in image processing [1]. Many segmentation methods have 
an energy function, a shape model, and an optimization strategy. 
Each of these parts plays an important role in the design of an 
accurate segmentation algorithm. Prior knowledge is incorporated 
in a variety of fashions in order to design more accurate 
segmentation algorithms [2-5]. Prior knowledge can be used in the 
energy function, the shape models, or the optimization algorithm. 
For example, we have used prior knowledge to extract constraints 
about the energy function parameters in [6]. Another category of 
segmentation methods use relation between different structures [7-
9].   
In all of these three methods, the authors used principal component 
analysis (PCA) to extract shape relation between different 
structures in the training datasets. In this framework, each structure 
can be defined based on the weights of the principal shapes. In this 
paper, we introduce a 3D segmentation framework based on the 
PCA which considers shape relation between different structures. It 
uses principal shapes and their weights to define shapes of 
different structures.  The probabilistic energy function of the 
method is defined based on intensity, tissue type, and location 

information of the structures. To extract shape models, tissue type, 
and location information, a multiple atlas method is employed. For 
intensity information, the nonparametric probability density 
function (pdf) is used which considers intensity relation of 
different structures. To find the local minimum of the energy 
function, a two-step optimization strategy is used. In the first step, 
shape parameters are optimized based on the analytic first and 
second derivatives of the energy function with respect to the 
parameters. In the second step, shapes of the structures are fine-
tuned using a level set method.  

 
2. ENERGY FUNCTION 

Suppose that we want to simultaneously segment m different 

structures in a skull stripped image  I x and we have n skull 

stripped training intensity datasets    1,...,i
TrI x i n and their 

corresponding training label datasets    1,...,i
TrL x i n  in 

which all of the m structures are segmented and labeled with labels 

 0,...,l m . In each label image, label 0 is assigned to region 

outside all of these m structures (outside region).  
For each voxel in the image we define the probability of a pixel 

belonging to the region k
 with 

       k k fk skp x x p x p x p x   
 

where  1,..., 1k m   

with m+1 indicating the outside region. In this definition,  fkp x  

explains the information about the tissue type (the intensity 

ranges),  skp x  considers the location information, and  kp x  

demonstrates the intensity uniformity of the kth structure. To 

compute  and  fkp x  in the first step, we use multiple 

atlas strategy to register    1,...,i
TrI x i n   to I(x) with a non-

rigid registration method. The corresponding transformation is 

named Ti .There are many methods in the literature that use 
multiple atlases for segmentation [10-12]. We employ a different 
method in which local information is used for atlas construction. In 
the previous methods in the literature, local information is applied 
for each voxel independently, but here we use a local weight for 
each structure which is not global in the form of [11] and not local 

in the form of  [10, 12]. We apply iT  to the label volumes 

 skp x



   1,...,i
TrL x i n  to get  Ti

Tr

iL x . In the next step, for each 

structure we find a region of interest (ROI) based on the registered 

datasets and name it kR  which shows the ROI of the kth structure. 

In addition, we define   
kR

I x  to show the part of the image I(x) 

selected by .  Then, we use the following equation to find the 

similarity between structures of the training datasets and the test 
image: 

     TMI ,
i

kk

i i
k Tr RR

M I x I x   
 

 (1)

where MI(A,B) show the mutual information between the images A 
and B. 

If 1i i
k kM M

 for 11... ,i m i i   based on kR  for structure k, it 

means that the kth structure of the dataset i1 has highest similarity 
with the kth structure of the test image I(x) based on the mutual 
information metric. Next, for each label we construct the following 
image: 

     T

1

1...
i

n
s i i

k k k Tr
i

x M S L x k m 
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    (2) 

where     
 
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 and S is the sign distance 

function (SDF) of the binary. This image has the property that a 
point with a lower value has higher probability of falling inside the 

structure of interest. Thus, using  s
k x  we can define psk(x) for 

the kth structure as: 
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This function is 1 when  takes its minimum and 0.5 when

  0s
k x  . The parameter   is used to resolve the numerical 

problems associated with using   ln skp x  in the next steps. To 

calculate  fkp x , we use a probability mass function (pmf) with a 

new strategy explained next. We apply clustering twice with 3 and 
10 clusters. The 3-class segmentation results capture the global 
intensity information of the tissues in the brain while the 10-class 
segmentation captures their local or fine intensity information.  To 
use the results, we model the pmf of the tissue type of each 
structure, i.e., the probabilities of each of the 10-class clusters 
being present in the structure, by the model shown in Figure 1 
whose parameters are estimated using: 

    
    
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In this equation, Cn(k) shows the intensity of the center of the k-th 
class (cluster) in the n-class clustering. For the region outside all of 
the m structures (region m+1), if all of the other structures have the 
same pdf, we use 1-p but if there are different pdf’s, we use p = 
0.5, as described in:  

  
Fig.1. Scaled probability mass function used for integrating the tissue type 

information in the segmentation process. 
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To calculate  kp x , we use the Parzen window estimator that is 

defined in the form of       1 ˆ ˆ
kp x K I x I x dx


 
   [13].  In 

this equation,  K t is a Gaussian kernel with variance σ which is 

estimated by the method of [14]. In addition, is used for the 

cardinality that is the number of members in the set or the region
 . Thus, we can estimate pdf's for each m+1 using the following 
equations: 

      1 ˆ ˆ 1, ,
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Finally, we write the energy function as: 
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This function depends on the m regions and the probability of a 
voxel being within each region. To find the best segmentation, we 

should find the regions  1, , m  . It should be noticed 1m is 

a function of the other regions and is not an independent region. 
When all of the regions are as uniform as possible, same type 
regions have more similar intensity distributions, all of the regions 
are in the correct tissue as much as possible and all of them are in 
the proper locations, the energy function takes its optimum. If 
decreasing F(p) such as –ln(p) is used, The optimization will be a 
minimization problem. To optimize this function, first a shape 
(region) representation method is needed. In the next section, we 
use training datasets to find a shape model which considers shape 
relation of different structures.  

 
3. SHAPE REPRESENTATION 

Sign distance function is one of the most effective shape 
representation methods in the literature [15] which is used in our 
framework. There are important information about the shapes and 
relation of the structures that can be used in segmentation. In [9], 
we used these relations and showed their effectiveness. Here, we 
use the same idea. 

Suppose that we define a sign distance function (SDF)  k x
which is negative inside region  1,2,...,k m . We need to find 

this SDF’s for a correct segmentation. We know that there are 
relations between shapes of different structures and want to use 
these relationships for segmentation. We have n training label 

kR

 s
k x



maps  
Tr

iL x  with m non-zero labels  1,...,k m  representing 

m structures. To extract shape relations between different 
structures, for each label we register binary images of all training 

images to the one with highest similarity to   
kR

I x to find the

A i
k ’s. Each A i

k is an affine transform with 12 parameters. It 

should be noticed that for each structure k we have 12×(n-1) 
parameters that should be optimized because for the fixed one (for 

the structure k it is kp ), A kp
k I . We use the location 

differences of the center of masses of the fix and the remaining 
images for initialization. 

In the next step, we compute the SDF every    Ai
k i

k TrL x  and 

construct    1 ,...,i i i
m  

    
 

 

where    Ai
ki i

k k TrS L x  
  

      
 

and X’ is the transpose of X. The function  f  changes the 3D 

image f with the size of d1× d2× d3 to a vector of size d1d2d3. In our 
approach, the shape priors are modeled using PCA as some basis 

shapes ( i ), where deformation model of multiple structures is 
considered to be the combination of this basis priors (

1

l
i

i
i

w  


  where

 1

1 n
i

in
 



  ). In this model, we are seeking 

proper values of wi that minimize our energy function which 

depend on functions j  which are parts of

     1 ,..., m    
    

 
. Thus, for each set of wi’s we can find 

 1,..., m  to compute the energy function. In the next section, 

we summarize the energy function and design the optimization 
strategy. 

 
4. OPTIMIZATION 

To consider the pose variances in the segmentation process, for 
each structure an individual affine transform is used. These 
transforms give flexibility to the regions and can be used for the 
local alignment. In this case, for each region, we add 12 parameters 
to the problem. Thus, we have 12l m   parameters which we 
put in the vector P.   

           
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In this equation, H is Heaviside function. Any optimization 
problem needs an initialization. For principal shapes, we use

0w  and for the Affine transforms, we set the translation part of 

the matrices such that the center of mass of   0k x  (with 0w

) be the same as the center of mass of   0s
k x  . Other parts of 

the affine matrices are same as the Identity matrix. To optimize the 
energy function, many methods use first order derivatives and 
Quasi-Newton or steepest descent optimization strategies [7, 9]. To 
use this algorithm, we need to compute first order derivatives of 
the energy function for the parameters in P. For the energy 

function, it can be shown that the derivative of the function J with 
respect to a parameter   is: 
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(9) 

In this equation, we use abbreviations      t j f j s jp x p x p x
 
and

     ˆ
j j t jp x p x p x . In addition,  Γj is the boundary of the jth 

region. For computing the desired derivatives we need to compute

 ˆj x





 where we use the same method in [9]. 

In the next step and after optimization of the parameters of the 
energy function using constraint optimization algorithm, to capture 
details of the structures that cannot be extracted from the principal 
shapes, we remove shape dependency due to the principal shapes 
and define the following function: 

        1 2
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, ,...,min
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m
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
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In this function, there are m level set functions that should be 
optimized with the same constraint as before. Thus we can use the 
following energy function where the second term is for the 
smoothness of the shapes. 
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Using the following equation, we can update each shape iteratively 
where t shows time. 
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5. RESULT 
To test and evaluate the proposed method, we have applied it to the 
MRI of 64 patients with mesial temporal lobe epilepsy (mTLE) 
acquired on a General Electric 1.5T Signa System (GE Medical 
Systems, Milwaukee, WI) [16]. The hippocampi were manually 
segmented by an expert. Comparison of the hippocampus 
segmentation results generated using our method and the expert 
segmentation is shown in Figure 2.  It is known that the mTLE 
may cause changes in the size and shape of the hippocampus. Thus 
correct segmentation of hippocampus in MRI of mTLE patients is 
a complicated task. The method is also compared with other 
previous methods (Table 1) which shows the superiority of our 
method. In addition, we compared lateralization output using 
right/left volume ratio of automatic methods and the manual 



segmentation in Table 2. It can be seen that except HAMMER 
other methods have almost same standard lateralization percentage.  
 

 
Table 2. Comparison of lateralization accuracy of mTLE patients 

extracted using 4 segmentation methods. 

Segmentation Method Manual HAMMER 
Free 

Surfer 
Our 

Method 
T1 Volume R/L Ratio 0.78 0.73 0.78 0.77 

 

 
Fig. 2. Comparison of the segmentation results for the 

hippocampus generated our method (blue) and the expert 
segmentation (white) in a series of coronal images for a sample 

temporal lobe epilepsy dataset. 
 

 
6. CONCLUSION 

We have presented a new method for segmentation of the brain 
subcortical structures using their shape relationships and tissue 
type and location information using multiple atlas strategy. The 
energy function used for segmentation is based on the entropy of 
different structures. Tissue type information is used to improve 
robustness and accuracy of the segmentation process. In addition, 
location information is used to further improve the segmentation 
process. With a powerful automatic initialization of the structures 
which considers tissue type and location information and the use of 
the quasi-Newton algorithm, a local minimum of the energy 
function is found. In the final step, a level-set based optimization is 
applied. To achieve accurate results, the intensity pdf’s are 
calculated in each iteration of the algorithm and gradients are 
computed analytically. Experimental results have illustrated 
superiority of the proposed framework to the other methods in the 
literature for the segmentation of hippocampus in MRI of mTLE 
patients. In addition, our proposed method can be used for 
lateralization with accuracy close to that of the manual 
segmentation. 
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Table 1. Mean and Standard Deviation (Std) and Minimum and 
Maximum of Dice similarity, relative absolute difference (RD), Hausdorff 

distance (H95), average symmetric surface distance (AD), of our, 
HAMMER, and FreeSurfer methods for the segmentation of 

hippocampuses in MRI of 64 mTLE cases. 
Dice RD H95 AD 

Our 
Method 

Mean±Std 0.71±0.08 0.06±0.35 4.17±2.91 0.89±0.48
Minimum 0.52 -0.46 1.87 0.42 
Maximum 0.81 1.29 14.37 2.65 

HAMMER 
[17] 

Mean±Std 0.65±0.08 -0.12±0.19 4.20±2.53 1.04±0.65
Minimum 0.39 -0.45 2.07 0.51 
Maximum 0.76 0.74 21.08 5.27 

FreeSurfer 
[18] 

Mean±Std 0.63±0.13 -0.28±0.30 6.00±4.05 1.62±2.81
Minimum 0.00 -0.62 2.14 0.46 
Maximum 0.79 1.41 28.74 20.08 


