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ABSTRACT 
This paper compares independent component analysis 
(ICA) and canonical correlation analysis (CCA) for func-
tional magnetic resonance imaging (fMRI) data. The ICA 
method is implemented with two well-known algorithms, 
which are Infomax and FastICA. In the CCA method, we 
have investigated two hemodynamic response models for 
the signal subspace: differential Gamma and Balloon mod-
els. The criterion for the comparison is the area under the 
receiver operating characteristic (ROC) curve. This crite-
rion is evaluated for different contrast to noise ratios 
(CNR) for simulated datasets. Also, task-related activation 
maps are compared for a real auditory dataset. The results 
indicate the superiority of CCA for CNRs below 0.75; but 
as CNR goes beyond this limit, the ICA with Infomax algo-
rithm outperforms other methods. Furthermore, the use of 
differential Gamma and Balloon models provides nearly 
the same performance. 

1. INTRODUCTION 

Functional Magnetic Resonance Imaging (fMRI) as an indi-
rect method of brain activity detection, has received great 
attention in recent years. Each fMRI experiment provides a 
4D dataset with low contrast to noise ratio, which makes 
the analysis a challenging task. Therefore, researchers have 
proposed several analysis methods that can be categorized 
into two main groups: hypothesis-based and data-driven.  

Hypothesis-based methods, try to utilize prior informa-
tion about the activation patterns to analyze the fMRI data. 
The most famous methods of this group are: correlation 
method, general linear model (GLM) [1] and canonical cor-
relation analysis [2]. Data-driven methods avoid any assump-
tion about the activation pattern and explore the data in order 
to discover underlying patterns. Principal component analy-
sis (PCA) [3], independent component analysis [4], and clus-
ter analysis [5] are among the data-driven methods. 

Canonical correlation analysis (CCA) is a successful ex-
tension of the ordinary correlation analysis with a main dif-
ference. The correlation method is a univariate technique, 
whereas the CCA is a multivariate one, i.e. it operates on 
multidimensional variables. The method combines subspace 

modeling of the hemodynamic response and the use of spa-
tial dependencies to detect homogeneous maps of brain activ-
ity. Comparing with the GLM, the CCA method uses multi-
dimensional datasets on both sides. This makes it more gen-
eral than the GLM, in which one side is univariate (a voxel 
time series). The CCA can, therefore, be seen as residing at 
the top of the hierarchy of model-based methods. Several 
extensions to the ordinary CCA, such as constrained CCA 
and nonlinear CCA are also proposed in recent years [6-7].  

Among the data-driven techniques, the ICA has been 
shown to provide a powerful method for the exploratory 
analysis of the fMRI data [8]. The ICA method assumes lin-
ear mixtures of the sources (independent components) and 
tries to recover the underlying signals based on information 
theory. Therefore, it is an excellent method to spatially local-
ize and temporaly characterize the sources of blood oxygena-
tion level dependent (BOLD) activation. Both temporal and 
spatial ICA can be applied to fMRI. Spatial ICA is more 
popular in fMRI applications because the spatial dimension 
is much larger than the temporal dimension in fMRI. Among 
several algorithms developed for ICA, Infomax and FastICA 
have generated the best results for fMRI data analysis [8-9].  

In this paper, a comparison between the CCA and ICA 
methods is presented. For the CCA method, the same proce-
dure as [7] is followed. Both differential Gamma and Balloon 
models [10-11] are examined as the hemodynamic response 
models and spatial filtering is performed using spatial basis 
functions. As the ICA methods, Infomax [12] and FastICA 
[13] are applied on the data reduced by the PCA. The com-
parison is based on the area under ROC curve for different 
CNRs using simulated datasets and task-related activation 
maps for a real auditory dataset. 

2. CANONICAL CORRELATION ANALYSIS 

Canonical correlation analysis is a well known method in 
statistics, which was first developed by Hotelling in 1936 
[14]. For two multidimensional random vectors x and y that 
are n and m dimensional respectively, the CCA seeks linear 
combinations:  
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Figure 1. Canonical correlation analysis between a 3×3 region in a 
fMRI image and a set of m basis-functions representative for signal 

subspace. 
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so that X and Y give maximum correlation (which is de-
noted by �). In (1) and (2), the vectors xw  and yw denote 

the linear combination coefficients and X and Y are called 
canonical variables. A schematic of CCA method is shown 
in Figure 1.  

In fMRI applications, each voxel and its neighbors’ time 
series serve as one of the input sets to the CCA algorithms. 
We need the other input set, which should be representative 
of the signal subspace. There are several models for signal 
subspace. Truncate Fourier series with frequency harmonic 
of the box car paradigm was proposed in [2]. However, the 
accuracy of the model is controversial. Later, more accurate 
signal subspaces based on differential Gamma function and 
Balloon model were proposed [10-11]. In [7], large numbers 
of hemodynamic responses were generated by changing the 
parameters in differential Gamma function and Balloon 
model within a logical range. Then, the average of the re-
sponses and the first principal components served as the sig-
nal subspace basis functions. In this paper, we use the same 
method. 

It is seen that CCA, converts simple univariate correla-
tion method to a multivariate method, which incorporates 
spatial information as well as prior temporal activation pat-
tern. The CCA also conforms well to the connectivity princi-
pal in active regions of the brain. It can find a signal in the 
signal subspace that has similarity to the time course in the 
region of multiple voxels.  

 

3. INDEPENDENT COMPONENT ANALYSIS 

As a blind source separation (BSS) method, the ICA 
method assumes that the observed signals are the linear 

mixture of underlying statistically independent source sig-
nals. It has recently demonstrated considerable promise in 
characterizing the fMRI data, primarily due to its intuitive 
nature and ability for flexible characterization of the brain 
function. As typically applied, the brain networks are as-
sumed to be spatially nonoverlapping and temporally co-
herent, though convolutive and other models can be used to 
relax this assumption. Popular approaches for performing 
ICA include maximization of information transfer, which is 
equivalent to maximum likelihood estimation, maximiza-
tion of non-Gaussianity, mutual information minimization, 
and tensorial methods. The most commonly used ICA algo-
rithms are Infomax [12], FastICA [13], and joint approxi-
mate diagonalization of eigenmatrices (JADE). 

Consider an observed m-dimensional data vector 

1 2( , , ..., )T
m=x x x x . The ICA model can be written as: 

 A=x s  (3)  
where 1 2( , ,..., )T

n=s s s s is an n-dimensional vector, whose 

elements are independent sources and n mA × is the unknown 
mixing matrix. The goal of ICA is to estimate an unmixing 
matrix m nW ×  such that 
   

 W=y x  (4) 
where y is a good approximation of true sources. 
      The ICA method is used in fMRI modeling to explore the 
spatio- temporal structure of the signal, i.e. it can discover 
either spatial or temporal independent components. Seeking 
components that are maximally independent in space, spatial 
ICA (SICA) is more popular for fMRI data analysis. In 
SICA, the observation data matrix, X, is an N × M matrix 
(where N is the number of time points and M is the number 
of voxels). The aim of fMRI analysis is to factor the data 
matrix into a product of a set of time courses and a set of 
spatial patterns. In PCA, this is achieved by the singular 
value decomposition of the data matrix, where the data ma-
trix is written as the outer product of a set of orthogonal 
time courses and a set of orthogonal spatial patterns. The 
ICA is a more general approach since it uses higher order 
statistical moments. ICA aims at decomposing the data ma-
trix to the product of spatial patterns and corresponding 
time courses, where either patterns or time courses are in-
dependent. 
     To reduce the dimensionality of the data, before per-
forming ICA, PCA is generally used to discard the principal 
components with the lowest variance.  

4. DATASETS 

4.1 Simulated Dataset 
     In order to make the simulated fMRI data similar to the 
real data, we superimpose simulated activation time-series on 
the resting state fMRI data. The resting data sets are acquired 
using a 1.5T MRI scanner. A total of 256 volumes are col-
lected using a T2* -weighted gradient echo single-shot echo-
planner (EPI) with TR=1.6 sec, TE=50 ms, Flip Angle=90º 
and FOV=250 × 250 mm². Each volume consists of 15 trans-



 
Figure 2. Box Car paradigm, gamma function as HRF and the final 

activation signal for the simulated dataset. 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. Activation pattern in the simulated dataset 

 
verse slices of size 64 × 64. Activation time series are gener-
ated by convolving a boxcar function (6 blocks with 60.8–sec 
period, 20.8sec on, 40sec off started with 44.8sec rest) with a 
hemodynamic response function (HRF) that is gamma func-
tion with � and � set to 5 and 0.06 respectively (Figure 2).  
Gamma function is defined as: 
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     Simulated activation time-series consisted of 256 points 
are added to the predefined activation regions (Figure 3) to 
two consequence slices (slice #9 & #10). Activated regions 
had different shapes and sizes (6, 12, 18 voxel). The total 
number of activated voxels was 144 (Figure 3). 7 simulated 
datasets are constructed with different CNRs ranging from 
0.5 to 2.0 by 0.25 increments. Here, the contrast to noise ratio 
is defined as: 

/CNR S nσ= ∆                                 (6) 
where S∆ is the signal enhancement and nσ  is the noise 
standard deviation [15]. 
 
4.2 Real Audio Task Data 
This data set comprises whole brain BOLD/EPI images ac-

quired on a modified 2T Siemens MAGNETOM Vision sys-

Table 1. Balloon model parameters 
Balloon Model 

Parameter Base Value Tolerance 
Neuronal efficacy 0.5 0.15 

Signal decay 1.2 0.3 
Autoregulation 2.4 0.5 

Transit time 1 0.5 
Capillary transit time 1 0.5 

Cp/Cb Ratio 0.01 0.005 
Volume Ratio 75 25 

Metabolic demand 0.1 0.05 
Stiffness 0.3 0.1 

Tissue oxygene concentration 0.1 0.05 
Tissue Oxygene Scale 5   

Resting oxygene extraction 0.4 0.1 
 

Table 2.  Differential Gamma model parameters 

Differential Gamma Model 
Parameter Base Value Tolerance 

Center Peak 1 5.5 2.5 
Shape Peak 1 6 1 
Center Peak 2 5 2.5 
Shape Peak 2 14.5 2.5 
Weight Peak 2 0.125 0.125 

 
tem. Each acquisition consists of 64 contiguous slices 
(64x64x64 3mm x 3mm x 3mm voxels). Scan to scan repeat 
time (TR) was set to 7sec. 96 acquisitions are made from a 
single subject, in blocks of 6, giving sixteen 42 sec blocks. 
The condition for successive blocks is alternated between 
rest and auditory stimulation (6 scans rest, 6 scans stimula-
tion), starting with rest. Auditory stimulation is bi-syllabic 
words presented binaurally at a rate of 60 per minute. By 
discarding the first few scans, the initial 96 scans are reduced 
to 84 scans. 
 
4.3 Preprocessing 
All fMRI datasets were motion corrected, spatially smoothed 
and the brain voxels were segmented from the background. 
For all time-series, mean and drift component were estimated 
and subtracted from the time-series. For CCA, instead of a 
single Gaussian smoothing function, a set of 4 spatial basis 
filters were used to construct a steerable filter as proposed in 
[7]. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

5.1      Results of the Simulated Datasets 
For CCA, the differential Gamma and Balloon model pa-
rameters are summarized in Table 1-2. For each parameter in 
these models, there is a certain range of values that result in 
physiologically realistic shapes of the response. By varying 
the parameters randomly or systematically within these 
ranges, a large number of plausible response shapes can be 
produced. In this experiment, 500 HRFs are constructed, and 
the average of these signals and the first principal component 
are selected for signal subspace basis. 
     For ICA, the dimensions of the datasets are reduced by 
PCA from 256 to 47 using minimum description length



 
Figure 4. Area under the ROC curve vs. different contrast to noise 

ratios for the ICA and CCA methods. 
 

Table 3. Area under the ROC curve vs. different contrast to noise 
ratios for the ICA and CCA methods. 

Contrast to 
Noise Ratio 

ICA 
 Infomax 

ICA 
FastICA 

CCA 
- Differential 

Gamma 

CCA 
 Balloon 

0.5 0.8185 0.7943 0.9097 0.9165 
0.75 0.9908 0.9605 0.9763 0.9764 

1 0.9989 0.9985 0.9773 0.9773 

1.25 0.9997 0.9996 0.9774 0.9774 
1.5 0.9998 0.9998 0.9774 0.9774 

1.75 0.9999 0.9998 0.9774 0.9774 

2 0.9999 0.9999 0.9774 0.9775 

 
(MDL) criteria [16]. Then, both Infomax and FastICA algo-
rithms are examined for different contrast to noise ratios.  

A ROC curve is a plot of 1-� vs. � for different thresh-
olds of the rating scale, where � and � are respectively the 
probability of type I error (False Positives) and the probabil-
ity of type II error (False Negatives). In the fMRI context, the 
rating scale is a parameter reflecting the likelihood of voxel 
activation. The area under the ROC curve is commonly con-
sidered as a good single criterion for characterizing detection 
accuracy. Thus, the areas under ROC curves for different 
CNRs are computed for the CCA and ICA methods and the 
results are summarized in Figure 4 and Table 3. 

 
5.2      Results of the Real Dataset 
The CCA and ICA are also applied to the real fMRI data-
sets. The data reduction for ICA lowers the dimension of 
the data to 30 by the PCA. Both the correlation-map from 
the CCA method and the 30 IC-maps from the ICA method 
are converted to their corresponding z-maps. The z-maps, 
whose pixels are z-scores, can be determined by 

 
XiZi

µ
σ
−

=  (7) 

For CCA, Xi  is the i-th (i ranges from 1 to m×n, the total 

number of pixels of the map) correlation value of the corre-

 

a. ICA – Infomax b. ICA – FastICA 

c. CCA – Differential Gamma d. CCA – Balloon 
 

Figure 5. Activation maps (30th slice) for z-score threshold of 3.1 
(p<0.001) 

 
lation map, and µ  and σ  are the mean and the standard 
deviation of all the correlation values of the same map. For 
ICA, Xi  is the i-th pixel value in the IC-map, and µ  and 

σ  are the mean and the standard deviation of all the pixel 
values of the IC-map.  
     After calculating Zi, a threshold value of z = 3.1 which is 
corresponded to the significance level of 0.001 (p<0.001), 
is applied to z-score maps. Figure 5 shows the resultant 
activated voxels on the 30th slice. 
 
5.3 Discussion 

It seems that for low CNRs, the CCA outperforms the 
ICA because prior information about the activation pattern 
helps this method to detect more activated voxels than ICA. 
By increasing the CNR, the ICA demonstrates a better per-
formance and the CCA results do not change significantly for 
CNR higher than 1. The performance of Infomax and Fas-
tICA algorithms are very similar for CNRs higher than 1, but 
for lower CNRs infomax algorithm performs better.  

It can be concluded that prior information about the acti-
vation pattern in CCA, such as signal subspaces based on 
differential Gamma and Balloon models, bears some inaccu-
racy. While it helps to detect activation in very low CNR, it 
limits the performance for high CNRs. It can be resulted that 
the CCA method still has the disadvantages of hypothesis-
based methods. Although HRF and signal subspace models 



are improved in recent years, but still there is a considerable 
gap between the actual brain response patterns and current 
models. Human brain response varies among different sub-
jects, different brain areas and different times. So, simple 
linear time-invariant model with experiment paradigm as an 
input, can not model all these variations and to be very accu-
rate for each person simultaneously.    

The ICA method that avoids any prior assumption about 
the activation patterns, misses some information that is help-
ful to detect activated voxels in very low CNRs. On the other 
hand, it can discover the actual brain activation pattern in 
higher CNRs by exploring the data. 
     For the real dataset, all the results cover the Brodmann’s 
area (BA) 42 (primary auditory cortex) and BA 22 (auditory 
associated area). However, CCA detected more continuous 
activated regions. ICA detects few activated voxels on the 
other parts of the brain that seems to be false detected non-
activated voxels.  
     Overall, ICA with Infomax algorithm outperforms the 
other methods investigated in this research in the most of the 
CNRs range. Also, it should be noted that the computational 
times of the CCA and ICA methods are comparable. 

6. CONCLUSION 

In this paper, we compared the CCA and ICA methods for 
activation detection from the fMRI data. Hemodynamic 
response subspace is constructed both from differential 
Gamma and Balloon model for the CCA method. Infomax 
and FastICA algorithms of ICA with data reduction step 
based on PCA are also investigated. The results show the 
overall superiority of ICA method with the Infomax algo-
rithms. However, in very low contrast to noise ratios, CCA 
performs better. Furthermore, the use of differential 
Gamma and Balloon models provides nearly the same per-
formance.  
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