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Abstract: We propose a three-dimensional, nonparametric, entropy-based, coupled, multi-shape approach to segment 
subcortical brain structures from magnetic resonance images (MRI) using tissue type and location information. It 
integrates geometrical relationships among different structures into the algorithm by coupling them. It defines an 
entropy-based energy function which is minimized using quasi-Newton algorithm. To this end, the required probability 
density functions (pdf) are estimated iteratively using nonparametric Parzen window method. Also, using FANTASM 
tissue segmentation, a scaled pdf is defined for the tissue type of each structure. In addition, based on the training 
datasets, a pdf is defined for the location of each structure. Results are given for the segmentation of caudate, thalamus, 
putamen, pallidum, hippocampus, and amygdale illustrating superior performance of the proposed method compared to 
those of previous methods 
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1   Introduction 

A major category of the methods proposed for the 
segmentation of the brain structures from magnetic 
resonance images (MRI) optimizes an energy 
function with several parameters that represents the 
underlying shapes. An exciting approach for the 
optimization of the energy function is based on the 
partial differential equations. These equations are 
defined from the derivatives of the energy function 
with respect to the model parameters. Kass et al [1] 
introduced the first work in this category which has 
been improved by others in recent years. Recent 
methods benefit from a priori knowledge about the 
structures of interest. This makes the segmentation 
process robust to the imperfect image conditions 
[1]-[4]. For the methods developed based on the a 
priori information, a registration process is 

essential to integrate the prior model into the 
segmentation process.  

In addition, the anatomical structures in 
the brain are related to the neighboring structures 
through their location, size, orientation, and shape. 
An integration of these relations into the 
segmentation process improves accuracy and 
robustness as shown in [5]-[12]. The 3D 
deformable model introduced in [5] assumes 
multivariate Gaussian statistics for the parameters 
of the coupled shape model of multiple structures. 
Litvin et al [6] introduced shape distribution as a 
new concept for the segmentation of coupled 
objects. Their prior shape model is constructed 
from a family of shape distributions of features 
related to the shape. Their method is 2D and its 
extension to 3D is not reported yet. Addition of 
new terms in their energy function leads to 
challenges in the calculation of the derivatives 
required for the curve evolution. Akselrod-Ballin 



et al [7] proposed a knowledge-based multi-scale 
segmentation method that applied a graph 
representation in different levels. They used the 
probabilistic information derived from an atlas and 
a likelihood function estimated from the training 
datasets. 

Tu et al [8] developed a hybrid method 
that applied a multiclass classifier for the 
learning/computing of the multiclass 
discriminative models and a learned edge field to 
constrain the region boundaries. Bazin et al [9] 
introduced a segmentation method that used a 
statistical and topological atlas generated from the 
training data and some pre-existing general atlases.  
This topological atlas used principal component 
analysis (PCA) to extract shape variability for each 
structure. Development of the topological atlas 
requires manual editing and is thus semi-
automatic. The authors extended the energy 
function introduced in the FANTASM method [10] 
to include this information [9].  Corso et al [11] 
proposed a graph shifts algorithm using a 
dynamical hierarchical representation of the image.  
They minimized an energy function to segment the 
image.  The terms in the energy function were 
learned from the training data. Tsai et al [12] 
proposed a segmentation method that used PCA to 
capture the variability of different structures. 
Akhondi-Asl et al [13] extended their methods to 
consider a more realistic shape variability model 
and an online pdf estimation approach.  

In this paper, we add the idea of using 
tissue type and location information in the method 
of [13] and extend it by: 1) improving the 
flexibility of the shape models; 2) applying new 
fuzzy clustering for the extraction of the tissue type 
information; 3) construction of a spatial probability 
density function (pdf) from the training datasets; 4) 
enhancing the model construction process; and 5) 
an initialization strategy to improve the quality of 
the segmentation. 

2 Energy Function Construction 

There are many features that can be used to 
identify specific structures in an image. The goal 
of an automatic segmentation algorithm is to 
model these features and design the problem in a 
well-defined mathematical framework. 
Unfortunately, implementation and/or modeling of 
these features are not straightforward. Many of the 
segmentation methods consist of two important 
parts: a shape descriptor to show the shape; and an 
energy function to extract the forces to deform the 
shape. Desirable features are considered in one or 

both of these parts. Several shape descriptors are 
used in the literature [14]-[16]. In [14], kernel 
integrals are used for shape representation. In [15], 
medial shape representation is used and in [16] a 
point based method is introduced. More powerful 
methods for shape representation are based on 
distance functions and implicit representations. An 
implicit parametric shape representation has 
advantages such as computational efficiency, 
accuracy, capturing wide range of shape 
variability, and handling topological changes. We 
use a distance map for shape representation which 
is zero on the boundary of a shape and the 
Euclidian distance from the boundary elsewhere 
(negative inside, positive outside) [1].  

2.1  Shape Relations 

There are many relationships among different 
shapes, including pose, orientation, and other 
geometrical relations [17],[18],[19],[13].  Colliot et 
al [17] use fuzzy forces to describe spatial relation 
of different structures Scherrer et al [18] use 
location constraints provided by fuzzy descriptors 
as a priori anatomical knowledge to improve the 
segmentation results. Ciofolo et al [19] use a fuzzy 
decision system that combines the a priori 
knowledge extracted from an anatomical atlas with 
the intensity pdf of the image and positions of the 
contours relative to one another to have a 
segmentation method. Akhondi-Asl et al [13] 
developed a three-dimensional, nonparametric, 
entropy-based, and multi-shape method that 
benefits from coupling of the shapes. Their 
proposed method uses principal component 
analysis (PCA) to develop shape models that 
capture structural variability and integrates 
geometrical relationship among different structures 
into the algorithm by coupling them (limiting their 
independent deformations). 

We use their methodology for shape 
relation extraction with a modification on the 
registration method. We first apply a similarity 
transformation and then an affine transformation 
for the fine tuning of the registration process. In 
[13], only a similarity transformation has been 
used which cannot align structures accurately.  

Suppose that we are interested to segment 
m structures and have n training datasets where 
these structures have been segmented by an expert. 
After extraction of the distance maps of the m
desired structures for n  different training datasets, 
we subtract the mean distance map of each 
structure, computed by averaging of the training 
datasets, from each of the n signed distance maps 



to remove similar parts in different shapes and 
show them with k

iψ� . 
We generate up to n different eigenshapes 

for each of the m structures, denoted by k

i
φ  [13].  

Each one of these eigenshapes includes the 
relationships among different structures and takes 
the coupling into account. This is because the data 
from all structures are used in the definition of the 
eigenshapes. To allow limited, robust shape 
variability, we use q n≤ eigenvectors to represent 
each shape adaptively. The threshold q is 
determined based on the sum of the variances in 
different directions.  

In addition, to consider pose differences, 
we add 12 local alignment parameters (affine 
transformation) to the shape parameters of each 
structure. Finally, for each structure, we may write 

( ) ( ) ( )
1

, , , , , , ,
q

k k k k
i ik k k k k k

i
x y z x y z w x y zφ φ

=

� �
� �� �

= Φ +�w p � � � �� �  (1)

where w is the vector of eigenvectors multipliers 
and pk is the vector containing 12 transformation 
parameters for the alignment of the kth structure. 
In the next section, we present our proposed 
entropy-based segmentation method using the 
shape model described above. 

2.2 Energy Function 

There is a variety of information sources that can 
be used in the segmentation process. The common 
goal of a segmentation method is to use multiple 
sources of information without adding unwanted 
complexity to the method. In addition, because 
almost all of the segmentation methods are 
implemented as an optimization process, the 
initialization is critical for them. In our method, 3 
different and independent types of information are 
used. They are the information about the locations 
of the structures, the information about the tissue 
types of the structures (the intensity ranges of the 
structures), and the intensity uniformity of the 
structures.  The location information is extracted 
from the training datasets and the tissue type 
(intensity) information is extracted from the image 
to be segmented. To this end, two pdf’s are 
estimated for the location and the tissue type of 
each structure.  As explained next, these pdf’s are 
used along with an estimated pdf of the current 
segmentation of the structure to define an entropy 
function which is minimized when the image 
intensities in each structure are uniform.  
To segment m coupled structures with closed 
boundaries, there are m regions for these 
structures. We set the area outside of the m 

structures as 1m +  and use this notation 
throughout the paper.  The energy function is 

defined as � ( ) ( )
1
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|�| represents the cardinality of the set � (number 
of pixels). When all of the regions are as uniform 
as possible and are in the correct tissue as much as 
possible, and also are in the correct location, the 
energy function is at its minimum. We estimate the 
entropy of the kth structure using
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/
k kPΩ = Ω Ω  based on several previous 

publications [20]. In the entropy estimation, ( )p̂ x  

is the approximate pdf in region k of the 3D image 
I and ( )fkp x  is the pdf of the tissue type of the 

region k. Moreover, ( )skp x is the pdf of the 
location of the k-th structure. 
We estimate pdf's using the Parzen window 
method [21], with the Gaussian kernel (K) as

( ) ( )( ) ( ) ( )( )1ˆ ˆ ˆ ˆ,p p I K I I d
Ω

= Ω = −
Ω �x x x x x . We 

apply the rule of thumb proposed by Silverman 
[22] to estimate the standard deviation of the 
Gaussian kernel adaptively. 

The second pdf is extracted from a fuzzy 
clustering method. Fuzzy clustering is a popular 
method in the literature for classification of the 
brain MRI into white matter (WM), gray matter 
(GM), and cerebrospinal fluid (CSF). Our 
experiments show that a structure may partially 
belong to different tissue types and also the ranges 
of the intensities may be completely different in 
different structures. To consider this information, 
we use a new strategy where we apply the 
clustering twice with 3 and 10 clusters using the 
FANTASM method. We use this method because 
it considers the information of the neighboring 
voxels for the clustering. In the next step, equation 
(2) is used to find the pdf for each of the structures 
in the 10 class labeled image (If) using Fig. 1. In 
this equation, Cn(k) shows the intensity of the 
center of the k-th label in the n-label classification 
and the parameters l1 and  l2 are from Table 1 for 
each structure.  
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For the region outside all of the m 
structures (region m+1), if all of the other 
structures have the same pdf, we use 1-p for the 



pdf of the outside region but if there are different 
pdf’s, we use p = 0.5, as described in equation  

Suppose that there is a dataset (test dataset) and the 
goal is to segment m structures. As explained 
before, in the first step, it should be registered on 
the reference dataset. The problem is that the labels 
are unknown and thus the intensity images should 
be registered. In this case, a normalized mutual 
information measure is used as the metric and the 
linear interpolator is used for interpolation. To 
improve the results, the skull is stripped from the 
images using the BET method [23].  If the same 
process is done for the training datasets, effective 
information about the locations of the structures in 
the test datasets can be obtained.  To use this 
information, the same registration protocol is 
applied on all of the training datasets to find the 
locations of the structures when the intensity 
images are used. Next, the strategy explained 
before for shape model extraction is applied to find 
the mean shape of each structure ( ( )I

kΦ x ). 

Clearly, ( )I
kΦ x  is negative for the voxels 

inside the mean structure, is zero on the boundary, 
and is positive outside. If for a point, this value is 
more negative than another one, it means that it is 
more inside the structure and/or is inside the 
structure in more number of the training datasets 
than the other one. In addition, the points on the 
boundary are neither inside nor outside. Thus, the 
following decreasing function of ( )I

kΦ x  which is 

1 for the minimum of ( )I
kΦ x  and is 0.5 for 

( ) 0I
k =Φ x  (boundary voxels) is defined.  

( ) ( ) ( ) ( )( )( )( ).5 .5ln minsk I I
k kp e e e= − +Φ Φx x x  (4) 

Here, for the region outside all of the 
structures, we find 1-p for all of the structures and 
use their minimum for constructing the pdf of this 
region. The resulting functions can be considered 
as scaled pdf’s. 

Finally, we write the energy function as:  
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where P is the vector of 12m q× + parameters 
(because each one of the local alignments have 12 
parameters). 

3 Initialization and Optimization 

There are many ways to minimize the energy 
function. Quasi-Newton methods use the observed 
behavior of the energy function and its gradient to 
build the curvature information and make an 
approximation to the Hessian matrix. To minimize 
the energy function, we use Quasi-Newton 
algorithm with BFGS method for Hessian matrix 
estimation [24].  

The gradients can be estimated using 
numerical methods but analytical computation is 
more robust and generates more accurate results. 
There are two types of parameters, w and kp , for 
the thi component of ∇w and k∇p .  We compute 

derivatives as follows. 
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It can be seen that in these two equations, 
the first two terms show the energy changes due to 
the changes of the shape for the estimated pdf’s for 
all of the regions. The third and forth terms are the 
effects of the changes of the shape on the estimated 
pdf’s and the energy function, respectively. We 
can see that spatial and fuzzy probabilistic 
distributions do not contribute in these two terms. 
This is because of the property of the ln function 
that translates multiplication of the probabilities to 
their summation. In addition, note that all of the 
desired changes are on the boundaries. In these 
equations, for all of the points on the boundaries, if 
the probability of a point to be in the outside region 
is larger, the energy function is more negative. 
Also, note that the same happens for the third and 
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Fig. 1. Probability distribution (scaled)  
used for the fuzzy membership labels. 

 
Table 1. Shift values used for the probability  

construction for different structures. 
Structure l1 l2 

|Thalamus +1 -1 
Caudate +1 -2 

Hippocampus 0 -2 
Amygdala -1 -2 
Putamen +1 -1 
Pallidum +3 0 

 



forth terms.  Using the current parameters, the 

pdf’s, 
( )k

k
ip

φ∂
∂

x
 and 

( )k

iw

φ∂
∂

x
 can be estimated 

iteratively using the method of [13] 
As stated previously, the initialization is an 
important part of the segmentation process. So far, 
the model and the optimization function of the 
model are established. The next step is to place the 
model in the correct location of the image and start 
the optimization. For this purpose, we use the 

center of mass of ( )
( )

0

0

1

0
I

k

I

k

k
Ib

≤

>

	

�

�

Φ
=

Φ
x

x
 for pose 

initialization. Then, we use the spatial and fuzzy 
information to find the best location of each 
structure individually using the following energy 
function where d is the translation vector.  
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These translations are used in the final 
optimization step described before. We do not use 
intensity information in this step because the initial 
position is such that the estimated pdf is 
inaccurate. We use the intensities inside each 
region in final state of this step for the estimation 
of the variance and we fix it during the 
segmentation process. 

4 Results 

In this section, we present the results of applying 
the proposed method to real MRI of the human 
brain. The MRI data are obtained from 2 different 
sources. As the main dataset, the Internet Brain 
Segmentation Repository (IBSR) [25] is used for 
training and testing of the proposed method. There 
are 18 datasets on which expert physicians have 
segmented 43 brain structures. Same preprocessing 
that has been used in [13] is used here. To evaluate 
the results, we use the Dice coefficient (k), the 
Hausdorff distance (H), and the mean distance (M) 
[9]. Due to the outliers, the 95 percentile of the 

Hausdorff distance is used (H95). For 3D 
visualization of the structures, we use 3D Slicer 
and for registration of the training and testing 
datasets, we use ITK library. For optimization and 
extraction of the principal shapes, we use 
MATLAB.  

For the IBSR dataset, among different 
structures in the brain, we work with the following 
6 structures on the two hemispheres for a total of 
12 structures: 1) caudate; 2) thalamus; 3) putamen; 
4) pallidum; 5) hippocampus, and 6) amygdale. 
These structures are either used in many 
applications or hard to segment because of their 
unclear boundaries. They include a variety of 
shapes with different signal intensities, sizes, and 
other geometrical features. We use the leave-one-
out strategy to test the proposed segmentation 
algorithm. We randomly use one of the datasets as 
the reference to remove any bias due to this 
process.For this specific dataset, we used another 
random dataset as the reference. We segment the 
left and right structures or multiple structures by 
the proposed coupling method.  

Table 2. performance measures for the segmentation of the 
structures. 

In Fig. 2, a sample segmentation of the 
selected structures by our coupled method is 
shown along with the expert segmented structures.   
 Evaluation of the results using the k, M, and H95 
for the selected structures for 18 datasets is shown 
in Table 2. This table lists the performance 
measures for the segmentation of these structures 
by the proposed method which considers the 
coupling information. Besides, it lists the 
segmentation results of 6 other popular methods 
that have reported results for the IBSR datasets.  It 

 
Thalamus Putamen Caudate Pallidum Hippocam

pus Amygdala 

Our 
Method 

k 
M 
H95 

 
 

0.85±0.04 
0.75±0.22 
2.38±0.65 

 
 

0.80±0.06 
0.72±0.23 
2.32±0.63 

 
 

0.78±0.04 
0.61±0.14 
2.17±0.51 

 
 

0.75±0.05 
0.74±0.19 
2.38±0.69 

 
 

0.71±0.06 
0.84±0.18 
2.62±0.63 

 
 

0.68±0.09 
0.78±0.29 
2.99±0.94 

 [13]k 0.83±0.04 0.81±0.05 0.75±0.06 0.74±0.05 0.69±0.06 0.52±0.13 
Bayes 

[7] 
k 
M 
H95 

 
 

0.84 
1.44 
2.9 

 
 

0.79 
1.6 

3.36 

 
 

0.80 
1.44 
3.07 

 
 

0.74 
1.43 
2.75 

 
 

0.69 
1.88 
4.57 

 
 

0.63 
1.67 
3.38 

Naive 
[7] 
k 

 
 

0.83 

 
 

0.77 

 
 

0.65 

 
 

0.72 

 
 

0.62 

 
 

0.65 
ISCA 

[7] 
k 
M 

H95 

 
 

0.80 
1.55 
3.2 

 
 

0.78 
1.72 
3.89 

 
 

0.74 
1.84 
4.46 

 
 

0.70 
1.55 
3.2 

 
 

0.64 
1.91 
4.44 

 
 

0.58 
1.78 
3.89 

[19] 
k 
M 

 
0.77 
1.70 

 
0.70 
1.46 

 
0.65 
1.71 

 
0.62 
1.51 

- - 

 [9]k 0.78±0.05 0.76±0.03 0.80±0.04 - - - 

 
(a)                                (b) 

Fig. 2. Segmentation comparison between manually  
segmented structures (a) and the structures segmented  

by the proposed algorithm (b). 
 



shows that our method is more accurate than the 
others for Thalamus, putamen, pallidum, 
hippocampus, and amygdale. Results of the 
caudate segmentation shows that our method is 
superior to the others based on M and H95 but is 
inferior to the methods of Bazin et al [9] and 
Akselrod et al [7] for the k. Comparing our method 
with the method of Akselrod et al [7] (as the 
nearest method to ours) shows that our method 
produces superior results for M and H95. For 
example, for caudate our method has M value of  
0.61 mm which is about 2.5 times better than that 
of the Akselrod et al [7] method. In addition, our 
method is superior to their method based on k for 
all of the structures expect caudate.  

5   Conclusion 

We have presented a new method for the 
segmentation of the brain subcortical structures 
using their shape relationships. In the model 
development phase, the proposed method registers 
each structure individually before estimating their 
shape variations in two steps using similarity and 
affine transformations. In addition, in the 
segmentation phase, the proposed method applies 
an independent transformation to each structure, 
improving flexibility of the segmentation model. 
The transformation has twelve parameters to 
implement appropriate rotation, scaling, 
translation, and shearing. The energy function used 
for the segmentation is based on the entropy of 
different structures. With an automatic 
initialization of the structures and use of the quasi-
Newton algorithm, a local minimum of the energy 
function is found. Fuzzy tissue type and location 
information are used to generate robust and 
accurate segmentations. Experimental results have 
illustrated quality of the results generated by the 
proposed framework with respect to the 
competitive methods in the literature. 
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