
DIRECTED EPILEPTIC NETWORK FROM SCALP AND INTRACRANIAL EEG OF
EPILEPTIC PATIENTS

L. Amini1,2, C. Jutten1, S. Achard1, O. David3, H. Soltanian-Zadeh2,4, G.A. Hossein-Zadeh2, P. Kahane3, L. Minotti3, L. Vercueil3

1- GIPSA-LAB, Grenoble INP, Domaine universitaire- BP 46, F-38402 Grenoble Cedex, France.
2- Control and Intelligent Processing Center of Excellence (CIPCE), University of Tehran, Tehran, Iran.

3- Neurology Department and GIN U836 INSERM, CHUG, Grenoble, France.
4- Radiology Image Analysis Laboratory, Henry Ford Health System, Detroit, MI 48202, USA.

ABSTRACT
We proposed recently the computation of epileptic connec-
tivity graphs based on wavelet correlation coefficients be-
tween EEG signals. The suspected epileptiform electrodes
are recognized using the clustering of the topological prop-
erties of the graph that can be useful for pre-surgical stud-
ies. Here, we present a method for comparing epileptic net-
works estimated from scalp and intracranial EEG (IEEG)
in partial epilepsy patients. The results are presented for a
patient with left temporal epilepsy. Good spatial correspon-
dence between the IEEG and the scalp EEG epileptic graphs
is obtained. These results are consistent with the patient’s
clinical diagnosis.

1. INTRODUCTION

Drug resistant epileptic patients are recommended to un-
dergo resective surgery. The pre-surgery evaluations are
supposed to result in the localization of the presumed source
of seizures and thus to optimally determine surgical candi-
date regions. There are already methods for epileptic neu-
ronal source localization [1, 2], such as inverse problem
methods [3, 4] and network analysis [5, 6]. The question of
identifying epileptic brain structures and their inter-connect-
ions remains open. The problem of characterizing structures
with leading role in the epileptic activities is also remained
unsolved. Here, we try to take step toward answering such
questions. To this end we proposed a method based on the
connectivity analysis for identifying epileptic sources and
their primary and secondary inter-relationships.

Proposed connectivity measures in the literature can be
divided into linear and non-linear methods. These two cate-
gories are compared in [5]. One problem of the linear meth-
ods like coherence function from the fast Fourier transform
is characterized by high bias and variance. Filtering signals
in frequency bands has suggested to address this problem

We gratefully acknowledge Ippeita Dan for providing the 10/20,
10/10, and 10/5 systems MNI coordinates of the scalp EEG.

[7, 8, 9]. Whitcher et al. [7] proposed the MODWT [10]
correlation coefficients as a connectivity measure. Ansari et
al. [9] also proposed the square of correlation coefficients
between EEG signals filtered in narrow and overlapping fre-
quency bands. The authors compared this measure with a
standard estimator based on the coherence function show-
ing better statistical performances (bias and mean squared
error). Nonlinear methods can measure the possible nonlin-
ear associations. Wendling et al. [5] presented the connec-
tivity graph based on nonlinear regression during the tran-
sition from pre-ictal to seizure activity. The authors com-
puted nonlinear correlation coefficient between each IEEG
channel pair for periods of 10 seconds for each state (pre-
ictal period, ictal period, after termination of seizure). The
nonlinear measure varied along these states. However, they
showed that frequency-independent nonlinear methods like
nonlinear regression, and methods using averaging over the
frequency can not recognize the associations highly local-
ized in frequency.

We used the MODWT correlation coefficients measure
[7] with slightly improvement for our application. This mea-
sure does not have strong bias and variance as described
above. Moreover, the wavelet coefficients have the same
time sample size as input signal, since there is no decima-
tion (of course the bordering effect should be considered).
This property provides efficient time-frequency presenta-
tion of EEG signals. Time-frequency information of epilep-
tiform and non-epileptiform time intervals from scalp EEG
and IEEG signals is integrated into a differential connec-
tivity graph [11, 12], discriminating connections between
epileptic and non-epileptic states. These differential con-
nections are chosen by a statistical test over the wavelet cor-
relations of all of epileptiform and non-epileptiform time
intervals to increase the robustness of the outcome. Ex-
tracted features from the differential graph are used to lo-
calize the suggested epileptic electrodes. The time causality
between these electrodes is studied to identify the leading
brain regions during the epileptic activity. Source localiza-
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tion by the scalp EEG graph analysis is to determine the
electrodes close to the epileptic sources. This information as
well as other physiologically related knowledge like MRI,
fMRI, seizure semiology may be useful for the IEEG im-
plantation planning. Furthermore, proposed leading epilep-
tic brain tissues suggested by the IEEG graph analysis as
well as other clinical knowledge can be helpful for resec-
tion surgical planning.

The paper is organized as follows. In Section 2, we de-
scribe the data protocol, and computing the directed epilep-
tic graphs (DEG) computation. Section 3 is devoted to ex-
perimental results of the method from the scalp EEG and the
IEEG signals. The DEG results and standard clinical evalu-
ation are also compared. Concluding remarks are presented
in Section 4.

2. MATERIAL AND METHODS

2.1. Data

The IEEG recordings were obtained from a 31 year old male
with left temporal lobe epilepsy. He had the first seizure
at the age of seven years. The standard clinical diagnosis
using his scalp EEG showed an interictal spiking activity
involved not only in the left temporal lobe, but also in the
basal frontal and insular cortex. The patient underwent eval-
uation for resection surgery with the IEEG recordings [13].
He is seizure free after left temporal lobectomy surgery.

Eleven to fifteen semi-rigid multi-lead intracerebral elec-
trodes with 0.8 mm diameter were bilaterally implanted in
suspected seizure origins based on clinical considerations.
The multi-lead electrodes (Dixi, Besançon, France) include
5, 10, 15 or 18 leads evenly spaced every 1.5 mm. Each lead
has 2 mm length. The IEEG were recorded with an audio-
video-EEG monitoring system (Micromed, Treviso, Italy)
with a maximum of 128 depth-EEG channels and digitized
at 512 Hz. The electrode leads were recognized on the pa-
tient’s implantation scheme (part (a) of Fig. 1), and local-
ized in the MNI atlas. Bipolar derivations were considered
between adjacent leads within each electrode. For simplic-
ity, these derivations are shown as ei instead of ei+1 − ei.
Scalp EEG recordings were recorded with 18 bipolar elec-
trodes (according to the 10/20 standard (part (b) of Fig. 1) ).
Signals were digitalized with a sampling rate of 256 Hz (Mi-
cromed). The MNI 10/20 system coordinates [14] is used
for scalp EEG graph presentation. The bipolar derivations
are shown as eiej (i 6= j) instead of ej − ei. Here, we
focused on bipolar derivations in both scalp and intracra-
nial EEG recordings. The bipolar derivation may provide
more correctly measure differences of potentials between
two recording electrodes [15].

2.2. Directed epileptic graph (DEG) computation

Here, we explain the different steps of DEG computation
approach. DEG is a directed graph between suspected epilep-
tic sources.

• Interictal epileptiform discharges (IED) and non-
IED detection: The IED signals are detected manu-
ally by the expert neurologist. The start and end of
IED signals is marked as IED labels. The non-IED
labels are the time intervals without IED signals.

• Wavelet transform: Wavelet transform is chosen due
to its good advantages over Fourier transform tech-
niques for the EEG analysis [16]. The MODWT [10]
is applied on the EEG data for two reasons: 1) to re-
move the low frequency trends and noise; 2) to com-
pute the connectivity graph in different frequency ban-
ds. The IED signals of different patients and differ-
ent IED types have different frequency distributions.
The related frequency bands can be selected through
computation of the connectivity graph for all of the
scales in the wavelet domain. The scale giving the
maximum number of connections is chosen in this
study. However more than one frequency band (fre-
quency bands giving considerable number of connec-
tions) can be studied.

• Differential connectivity graph (DCG) computa-
tion [11, 12]: The MODWT coefficients in selected
frequency band is segmented as IED (non-IED) seg-
ments due to IED (non-IED) time intervals (labels).

We assume N -dimensional stationary IED and non-
IED segments as Sl

ml [k] = [s1[k] . . . sN [k]], s1, . . . ,
sN are the columns of matrix S. ml = 1, . . . , N l,
k = 1, . . . , T (ml). N l is the number of IED (non-
IED) labels. T (ml) is the length of each IED (non-
IED) segment.

The MODWT lagged correlation coefficients [7, 9]
(ρ̂l

ml

(
si, sj , τ

l[k]
)
, (i, j) ∈ {1, . . . , N}, i 6= j) is

estimated for each channel pair and IED (non-IED)
segment in terms of different time lags (τ l):

−10log10(T (ml)/2) ≤ τ l[k] ≤ 10log10(T (ml)/2)
(1)

τ l[k] is a function of l and k, since τ of different IED
(non-IED) labels can be different. T (ml) is the length
of Sl

ml [k] or the length of each IED (non-IED) time
interval. The maximum of this correlation coefficient
(ρ̂lmax

ml ) over τ l[k] is considered as the similarity mea-
sure. Next, a multiple hypothesis t-test [17, 18] is ap-
plied between the wavelet correlations (ρ̂lmax

ml ) of the
IED and non-IED labels to distinguish the connec-
tions with different behaviors (wavelet correlations)



in IED and non-IED segments using the following hy-
pothesis: {

Ht
0 : µ1

t = µ2
t

Ht
1 : µ1

t 6= µ2
t

(2)

where t = 1, . . . , Nt, Nt is the number possible con-
nections, and µl is the mean of IED (l = 1) and
non-IED (l = 2) wavelet correlations. The multi-
ple testing procedure depends on an Nt-variate (esti-
mated) test statistic null distribution for defining the
rejection connections and adjusted p-values. A DCG
graph shows the connections whose wavelet correla-
tions are significantly different between the IED and
non-IED time intervals. T-values of multiple hypoth-
esis t-test (2) can be positive or negative. The posi-
tive (negative) DCG graph is a subgraph of the DCG
with the connections whose t-values are positive (neg-
ative). The positive (negative) t-value connections
show the increase of wavelet correlations during the
IED (non-IED) time intervals.

• Source localization: The topological properties of
the positive and negative DCGs are calculated using
local and global efficiencies (LE and GE) [19]. LE
and GE are calculated for all of the nodes (channels)
in positive and negative DCGs. The power t-values
(the power t-values between the IED and the non-IED
segments in the related frequency band) are also cal-
culated [11]. The scalp EEG electrodes or the IEEG
electrode leads are clustered by the k-means method
using a five-dimensional feature space (GE, LE of the
positive and negative t-value graphs, and the power
t-value). The within cluster sum of squares is mini-
mized to divide the N nodes (channels) in five-dimen-
sional space in to three clusters. The number of clus-
ters is experimentally set to three. The features are
normalized and their values are between zero and one.
Source cluster (cluster including the suspected epilep-
tic electrodes) is labeled prior physiological know-
ledge. By visual inspection, the channel (bipolar)
containing most important IED signals is chosen by
expert neurologist. The cluster including this channel
is labeled as source cluster. The epileptic graph is a
subgraph of the DCG which contains the connections
between the source cluster electrodes.

• Timed causality: In order to determine the directions
of the epileptic graph connections, the timed causali-
ty relations between the epileptic candidate pair elec-
trodes are calculated.

We assume P -dimensional non-stationary observatio-
ns of the EEG in selected frequency band (MOD-
WT coefficients) as X[n] = [x1[n] . . . xP [n]]; n =
1, . . . , L. x1, . . . , xP are the columns of matrix X . P
and L are the number of source cluster electrodes and

the length of the original (non segmented) EEG signal
(time sample), respectively. The wavelet correlation
coefficient (ρ̂ (xi, xj , τ)) and the maximum wavelet
correlation coefficient (ρ̂max (xi, xj)) for a given pair
of channels (i, j) ∈ {1, . . . , P} , i 6= j are computed
via (3) and (4), respectively:

ˆCov {xi[k], xj [k + τ ]}√
ˆV ar(xi[k]) ˆV ar(xj [k + τ ])

(3)

ρ̂max (xi, xj) = max
τ

ρ̂ (xi, xj , τ) (4)

where −10log10(L/2) ≤ τ ≤ 10log10(L/2) is the
sample lag. ˆCov and ˆV ar [7] are the estimated co-
variance and variance, respectively. ρ̂ (xi, xj , τ) has
the following property:

ρ̂ (xi, xj , τ) = ρ̂ (xj , xi,−τ) . (5)

The τ corresponding to the maximum wavelet corre-
lation coefficient (ρ̂max (xi, xj)) is defined as timed
causality between xi and xj , and denoted as τmax. In
theory, τmax is equal to zero for concurrent signals
and negative (positive) if xi (xj) causes xj (xi). Due
to the property of (5), the timed causality between xj

and xi is negative (positive), if xj (xi) causes xi (xj).
To end with, the timed causality (τmax) between xi

and xj is as following: 0 xi and xj are time concurrent
negative xi time causes xj

positive xj time causes xi

The timed causality determines the direction of the
connections in the epileptic graph and its absolute
value defines the weights of the connections.

• In-degree and out-degree: A simple topological qua-
ntification of the nodes of the DEG can be obtained
by in-degree and out-degree measures [20]. The in-
degree din

i , and out-degree dout
i of a node i is respec-

tively the number of ingoing and outgoing edges in-
cident to the node:

din
i =

∑
j∈P

cji, dout
i =

∑
j∈P

cij (6)

where P is the number of source cluster electrodes,
i, j = 1, . . . , P . cij is the entry of the adjacency
(or timed causality) matrix C ∈ RP×P . cij(i<j) is
negative (positive) when there is an edge from i to j
(from j to i). The node with maximum out-degree
and in-degree can be considered as source and tar-
get of DEG, respectively. Origin of IED source may
rise from some brain tissues and then propagate to
other regions. Due to this assumption, identification
of source and target nodes of source cluster electrodes
is important.



(a) IEEG electrodes’implantation scheme

(b) 10/20 system of scalp EEG electrodes’ placement

Fig. 1. (a) Implantation scheme of the IEEG electrodes
(sagittal view); (b) 10/20 system of scalp EEG electrodes’
placement.

3. RESULTS AND DISCUSSION

The proposed method is applied on five partial epilepsy pa-
tients’ EEG data. Here, we report the results of the method
in a left temporal lobe epilepsy EEG data (Scalp and in-
tracranial EEG). The parameters of the method are summa-
rized in Table 1. Parts (a-b) of Fig. 1 are the implantation
scheme of the IEEG electrodes (sagittal view) and 10/20
system scalp EEG electrodes’ placements, respectively. Fig.
2 illustrates the comparison of the directed epileptic graphs
(DEG) from scalp and intracranial EEG (IEEG) superim-
posed on a 3D anatomical mesh. Parts (a-c) show the DEGs
from axial, sagittal, and coronal views, respectively. This
figure is presented to show the spatial relationship between
the IEEG and the scalp EEG DEGs. Good spatial agree-
ment between these graphs is observed. Parts (a-b) of Fig.
3 show the close view (zoom in on Fig. 2) of DEGs from
the scalp EEG and IEEG, respectively. Solid (dashed) lines
show positive (negative) t-value graph connections. Posi-
tive (negative) t-value connections illustrate the significant
increase of the wavelet correlations during IED (non-IED)
time intervals. The thickness of the lines is proportional to

(a) Scalp EEG and IEEG, axial view

(b) Scalp EEG and IEEG, sagittal view

(c) Scalp EEG and IEEG, coronal view

Fig. 2. Comparison (spatial correspondence) of directed
epileptic graph (DEG) from the scalp EEG and the IEEG su-
perimposed on a 3D anatomical mesh. (a) Axial; (b) sagit-
tal, and (c) coronal view. The positive (negative) t-value
connections are depicted in solid (dashed) lines. The close
views of scalp and IEEG DEGs are presented in Fig. 3.

the absolute values of τmax defined in the following of (5)
in Section 2.2. τmax is the time delay related to the max-
imum wavelet correlation coefficient between long (more
than one hour recording with sampling frequency equal to
512 Hz) and noise free (wavelet coefficients of the related
frequency band (2-4 Hz) are assumed to be noise free) sig-
nals [21]. Here we used the theoretical constraint (1) for cal-
culating τmax. Of course concerning the approximate max-



(a) Scalp EEG

(b) IEEG

Fig. 3. DEG from (a) scalp EEG; and (b) IEEG. (a-b) are
the close view (zoom in) of Fig.2. Positive (negative) t-
value graph connections show the significant increase of
the wavelet correlations during IED (non-IED) time inter-
vals. The thickness of the connections are proportional to
the absolute values of τmax defined in the following of (5)
in Section 2.2. The positive (negative) t-value connections
are depicted in solid (dashed) lines. The connection without
arrow in part (a) shows the time concurrency of the related
nodes.

imum and minimum nerve conduction velocity and the dis-
tance between electrodes may provide more accurate physi-
ological constraints [15] . However the connections are not
necessarily direct which complicates the determination of
these constraints. Here, the sign of τmax is used to define
the direction of epileptic graph connections.

The visual inspection of interictal spiking on the scalp
EEG and clinical data (seizure semilogy analysis) of the left
temporal patient suggested the involvement of the left tem-
poral lobe, with secondary propagation to basal frontal cor-
tex through insular cortex. After the confirmation of pre-
senting hypothesis by means of IEEG recording (interictal
and ictal recordings), the patient underwent left temporal

Table 1. Parameters of the method. N : number of the bipo-
lar channels; P : number of epileptic candidate electrodes
(scalp EEG) or electrode contacts (IEEG); L: length of the
original (non segmented) EEG signal (hour); Nt: number
of possible connections, N l: number of IED (l=1) and non-
IED (l=2) labels.

Parameter Scalp Intracranial
N 18 31
P 3 6
L (hour) 1.27 1.20
Nt 153 465
N1 133 411
N2 169 143
IED frequency band (Hz) 2-4 2-4
Sampling rate (Hz) 256 512
Wavelet filter db4 db4
Number of wavelet levels 9 9
False positive error 0.05 0.05

Table 2. In-degree and out-degree of the directed epileptic
graph. T: temporal; TO: temporo-occipital; TB: temporo-
basal; TP: temporal pole; amyg: amygdala; TN: temporal
neocortex; pHcG: parahippocampal gyrus; post Hc: poste-
rior hippocampus; lb: lobe; rg: region.

Brain region (electrode) in-degree out-degree

Sc
al

p T–lb (t3t5) 0 1
TO–rg (t5o1) 0 1
TB–rg (fb1tp1) 2 0

In
tr

ac
ra

ni
al

TP (i′1) 5 0
amyg (a′2) 1 4
TN (a′10) 2 3
pHcG (e′2) 3 2
TN (b′6) 2 3
post Hc (c′1) 2 3

lobectomy surgery four years ago and he is seizure free. The
resected region includes the IEEG electrodes {i′ a′ b′ e′ c′}.
In our scalp EEG analysis, temporal lobe ( t3t5), tempor-
o-occipital (fb1tp1), and temporo-basal regions (t5o1) are
identified as suggested epileptic regions (part (a) of Fig.
3). The epileptic regions proposed by the IEEG analysis
are temporal pole (i′1), amygdala (a′2), temporal neocor-
tex (a′10 and b′6), posterior hippocampus (c′1), and para-
hippocampal gyrus (e′2), which are in left temporal lobe.
These results are consistent with the resected regions in the
surgery. Successful patient’s treatment may suggest good
evaluation of the method’s results.

The directions of the epileptic graph connections adds
extra interpretable information about the source and target
epileptiform zones. The in-degree and out-degree of DEGs
from the scalp EEG and the IEEG are reported in Table



2. According to the scalp DEG findings, temporal lobe
(t3t5) and temporo-occipital region (t5o1) are time concur-
rent, and both of them are causing temporo-basal region
(fb1tp1), but with different τmax. τmax between tempo-
ral lobe and temporo-basal region (3.9 msec) is less than
τmax between temporo-occipital and temporo-basal regions
(7.8 msec). As can be seen in Table 2, temporo-basal re-
gion (target) has the maximum in-degree, and temporal lobe
(source) have the maximum out-degree. Since the connec-
tion between temporal lobe (t3t5) and temporo-occipital re-
gion (t5o1) is time concurrent, this edge is not considered
in degree computation. Temporal lobe ({t3t5, t5o1}, pre-
sumably t5) and temporo-basal region could be primarily
and secondarily involved by the epileptic discharges, re-
spectively. In the intracranial DEG, amygdala (source) and
temporal pole (target) have the maximum out-degree and
in-degree, respectively (Table 2). It means that amygdala
could contain the main epileptic source, while temporal pole
might receive the secondary propagated IED signals. Such
proposition would be very challenging to detect visually.
The extracted information may be a step toward better un-
derstanding of the interactions between epileptic zones and
therefore towards enhanced pre-surgical studies to restrict
patients’ resected regions while insuring the patients’ treat-
ment.

4. CONCLUSION

We studied the connectivity graph of suggested epileptic
sources from the scalp and intracranial EEG of epileptic pa-
tients. We computed the connectivity graph using time and
frequency properties of EEG signals. Using graph charac-
terization, suspected leading epileptic electrodes (from the
scalp EEG) and electrode contacts (from IEEG) can be sug-
gested prior to the planning of the IEEG electrodes implan-
tation and resection surgery, respectively. The future work
is to concentrate on more accurate topological quantifica-
tion of the directed epileptic graph to identify source and
target brain regions. In other words, we can estimate the
probability of resecting each suspected source brain tissues
by means of quantifying if the epileptic zone rises (source)
or receives (target) the IED signals.
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